
,.----.....
,I \

o

o

o

c

DOMAIN/IX Text Processing Guide

Apollo Computer Inc.
330 Billerica Road

Chelmsford, MA 01824

Order No. 005802

Revision 00
Software Release 9.0

Apollo Computer Inc. reserves the right to make changes in specifications
and other information contained in this publication without prior notice,
and the reader should, in all cases, consult Apollo Computer Inc. to
determine whether any such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF
APOLLO COMPUTER INC. HARDWARE PRODUCTS AND THE
LICENSING OF APOLLO COMPUTER INC. SOFTWARE CONSIST
SOLELY OF THOSE SET FORTH IN THE WRITTEN CONTRACTS
BETWEEN APOLLO COMPUTER INC. AND ITS CUSTOMERS. NO
REPRESENTATION OR OTHER AFFffiMATION OF FACT CON­
TAINED IN THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO
STATEMENTS REGARDING CAPACITY, RESPONSE-TIME PERFOR­
MANCE, SUITABILITY FOR USE OR PERFORMANCE OF PRODUCTS
DESCRIBED HEREIN SHALL BE DEEMED TO BE A WARRANTY BY
APOLLO COMPUTER INC. FOR ANY PURPOSE, OR GIVE RISE TO
ANY LIABILITY BY APOLLO COMPUTER INC. WHATSOEVER.

IN NO EVENT SHALL APOLLO CO?v1PUTER INC. BE LIABLE FOR
ANY INCIDENTAL, INDffiECT, SPECIAL, OR CONSEQUENTIAL

I

DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO
LOST PROFITS) ARISING OUT OF OR RELATING TO THIS PUBLI­
CATION OR THE INFORMATION CONTAINED IN IT, EVEN IF
APOLLO COMPUTER INC. HAS BEEN ADVISED, KNEW, OR SHOULD
HAVE KNOWN OF THE POSSIBILITY OF SUCH DAMAGES.

THE SOFTWARE PROGRAMS DESCRIBED IN THIS DOCUMENT ARE
CONFIDENTIAL INFORMATION AND PROPRIETARY PRODUCTS
OF APOLLO COMPUTER INC. OR ITS LICENSORS.

THIS SOFTWARE AND DOCUMENTATION ARE BASED IN PART ON
THE FOURTH BERKELEY SOFTWARE DISTRIBUTION UNDER
LICENSE FROM THE REGENTS OF THE UNIVERSITY OF CALIFOR­
NIA.

© 1985 Apollo Computer Inc. All rights reserved.
Printed in U.S.A.

First Printing: July 1985

This document was formatted using the troff text formatter distributed
with DOMAIN®/IX'IM software.

APOLLO and DOMAIN are registered trademarks of Apollo Computer Inc.
AEGIS, DGR, DOMAIN/IX, DPSS, DSEE, D3M, G11R, and GPR are trademarks of
Apollo Computer Inc.

,./

--------------------------- ------------------------------

o

o

o

o

o

PREFACE
The DOMAIN®/IX'IM Text Processing Guide and its companion volume,
The DOMAIN/IX User's Guide consist of those papers normally included in
Volumes 2A, 2B, and 2C of the UNIXt Programmer's Manual as supplied
by Bell Telephone Labs and the University of California at Berkeley.
The papers in these books have been revised where necessary to reflect
the DOMAIN system environment. However, we have tried to remain
aware of the history of UNIX as a multiuser system, and have included
the more important references to operations conducted at terminals.

Audience

This Text Processing Guide is intended for users who are familiar with
UNIX software, AEGIS'IM software, and DOMAIN networks. We recom­
mend that you read one of the following tutorial introductions if you are
not already familiar with UNIX.

• Bourne, Stephen W. The UNIX System. Reading: Addison-Wesley,
1982.

• Kernighan, Brian W. and Rob Pike. The UNIX Programming
Environment, Englewood Cliffs, Prentice-Hall, 1984.

• Thomas, Rebecca and Jean Yates. A User Guide to the UNIX System.
Berkeley: Osborne/McGraw-Hill, 1982.

This document also assumes a basic familiarity with the DOMAIN system.
The best introduction to AEGIS and the DOMAIN system is Getting Started
With Your DOMAIN System (Order No. 002348). This manual explains
how to use the keyboard and display, read and edit text, and create and
execute programs. It also shows how to request DOMAIN system services
using interactive commands.

The Structure of This Document

This guide is divided into two sections and an appendix.

Section 1 deals with the text editors ed, ex, and vi. It also provides
a brief introduction to the DOMAIN system's DM editor.

Section 2 covers the formatters trofl' and nroft', the macro packages
-me, -ms, and -mm, and the preprocessors eqn and tbl.

Appendices The Appendices are all UNIX papers related to text process­
ing. They are presented here in their original form.

t UNIX is a trademark of AT&T Bell Laboratories.

iii

Preface

Related Volumes

The DOMAIN/IX User's Guide (Order No. 005802) is the first volume
you should read. It explains how DOMAIN/IX works, and contains exten­
sive material on the Bourne Shell, C Shell, and the communications utili­
ties Mail and uucp.

The DOMAIN/IX Command Reference for System V (Order No. 005798)
describes all the UNIX System V shell commands supported by the sysS
version of DOMAIN/IX.

The DOMAIN/IX Programmer's Reference for System V (Order No.
005799) describes all the UNIX System V system calls and library func­
tions supported by the sysS version of DOMAIN/IX.

The DOMAIN/IX Command Reference for BSD4.2 (Order No. 005800)
describes all the BSD4.2 UNIX shell commands supported by the bsd4.2
version of DOMAIN/IX.

The DOMAIN/IX Programmer's Reference for System V (Order No.
005801) describes all the BSD4.2 UNIX system calls and library functions
supported by the bsd4.2 version of DOMAIN/IX.

The DOMAIN C Language Reference (Order No. 002093) describes C
program development on the DOMAIN system. It lists the features of C,
describes the C library, and gives information about compiling, binding,
and executing C programs.

The DOMAIN System Command Reference (Order No. 002547) gives
information about using the DOMAIN system and describes the
DOMAIN commands.

The two-volume DOMAIN System Call Reference (Volume I Order No.
007196, Volume II Order No. 007194) describes calls to operating system
components that are accessible to user programs.

Documentation Conventions

Unless otherwise noted in the text, this manual uses the following sym­
bolic conventions.

command Command names and command-line options are set in bold
type. These are commands, letters, or symbols that you
must use literally.

output Output returned by programs or commands is shown in
Roman type.

[optional] Square brackets enclose optional items in formats and com­
mand descriptions.

Horizontal ellipses indicate that the preceding item can be
repeated one or more times.

iv

c

\'-- '

"... ,;

o

o

o

o

o

name [x]

Preface

Single numbers or numbers and letters enclosed in brackets
immediately following the name of a UNIX command or
library function refer to the section where you can find
reference information on the command or function in the
DOMAIN/ IX Command Reference or the; DOMAIN/IX
Programmer's Reference.

tx A control character, where x is the character.

SMALL CAPS We use small caps for acronyms and key names; e.g., ASCII
and I RETURN I. Note that in tutorial material, we place a
box around the name of a key.

filename We use italics to represent generic, or meta- names in
example command lines, and also to represent a character
that stands for another character, as in dx where x is a
digit. In text, the names of files written or read by pro­
grams are set in italics.

Problems, Questions, and Suggestions

We appreciate comments from the people who use our system. In order
to make it easy for you to communicate with us, we provide the User
Change Request (UCR) system for software-related comments, and the
Reader's Response form for documentation comments. By using these
formal channels, you make it easy for us to respond to your comments.

You can get more information about how to submit a UCR by consulting
the DOMAIN System Command Reference. Refer to the CRUCR
(Create User Change Request) command. You can also get more infor­
mation by typing:

/ com/help crucr

in any UNIX or AEGIS shell. There is a Reader's Response form at the
back of this manual. We'd appreciate it if you would take the time to
fill it out when you're ready to comment on this document.

v

/
(

'''-.- ./

~
\
\
'-- .. /

(-~\I

\,

o

o

o

o

o

CONTENTS

1. An ed Tutorial 1-1
1.1 INTRODUCTION 1-1
1.2 STARTING ED 1-1
1.3 CREATING TEXT [a] 1-2
1.4 ERROR 1v1ESSAGES [?] 1-3
1.5 WRITING TEXT TO A FILE [w] 1-3
1.6 LEAVING ed [q] 1-4

1.6.1 Exercise 1 1-4
1.7 READING TEXT FROM A FILE [e] 1-4
1.8 READING TEXT FROM A FILE [r] 1-5

1.8.1 Exercise 2 1-5
1.9 PRINTING THE CONTENTS OF THE BUFFER

[p] 1-6
1.9.1 Exercise 3 1-7

1.10 THE CURRENT LINE [.] 1-7
1.11 DELETING LINES [d] 1-8

1.11.1 Exercise 4 1-9
1.12 MODIFYING TEXT [s] 1-9

1.12.1 Exercise 5 1-11
1.13 CONTEXT SEARCHING 1-11

1.13.1 Exercise 6 1-13
1.14 CHANGE [c] AND INSERT [i] 1-14

1.14.1 Exercise 7 1-15
1.15 MOVING TEXT [m] 1-15
1.16 THE GLOBAL CO:MMANDS [g, v] 1-16
1.17 SPECIAL CHARACTERS 1-17
1.18 SUMMARY OF COMMANDS AND LINE

Nillv1BERS 1-19

2. The ex Reference Manual 2-1
2.1 INTRODUCTION 2-1
2.2 USAGE 2-1
2.3 FILE MANIPULATION 2-2

2.3.1 Current File 2-2
2.3.2 Alternate File 2-2
2.3.3 Filename Expansion 2-2
2.3.4 Multiple Files and Named Buffers 2-3
2.3.5 Read Only 2-3

2.4 EXCEPTIONAL CONDITIONS 2-3
2.4.1 Errors and Interrupts 2-3
2.4.2 Recovering From Hangups and Crashes 2-3

2.5 EDITING MODES 2-4
2.6 CO:MMAND STRUCTURE 2-4
2.7 CO:MMAND PARAMETERS 2-4

2.7.1 Command Variants 2-5
2.7.2 Flags After Commands 2-5

vii

2.7.3 Comments 2-5
2.7.4 Multiple Commands per Line 2-5
2.7.5 Reporting Large Changes 2-5

2.8 CONlMAND ADDRESSING 2-6
2.8.1 Addressing Primitives 2-6
2.8.2 Combining Addressing Primitives 2-6

2.9 CONlMAND DESCRIPTIONS 2-7
2.10 REGULAR EXPRESSIONS 2-18

2.10.1 Regular Expressions 2-18
2.10.2 Magic and Nomagic 2-18
2.10.3 Regular Expression Summary 2-18
2.10.4 Combining Regular Expression Primitives 2-19
2.10.5 Substitute Replacement Patterns 2-19

2.11 OPTION DESCRIPTIONS 2-20
2.12 LIMITATIONS 2-25

3. An Introduction to Display Editing With vi 3-1
3.1 INTRODUCTION 3-1
3.2 GETTING STARTED 3-1

3.2.1 Notational Conventions 3-2
3.2.2 Vi and the VT100 Emulator Program 3-2
3.2.3 Keyboard Mapping 3-2
3.2.4 Specifying Terminal Type 3-3
3.2.5 Editing a File 3-4
3.2.6 The Buffer 3-5
3.2.7 View 3-5
3.2.8 Arrow Keys 3-5
3.2.9 Special Characters: ESC, RETURN and DEL 3-5
3.2.10 Getting Out of the Editor 3-6

3.3 MOVING AROUND IN THE F~E 3-7
3.3.1 Scrolling and Paging 3-7
3.3.2 Searching, Goto, and Previous Context 3-7
3.3.3 Moving Around on the Screen 3-8
3.3.4 Moving Within a Line 3-9
3.3.5 Summary of Cursor Movement and Scrolling 3-10

3.4 MAKING SIMPLE CHANGES 3-10
3.4.1 Inserting 3-10
3.4.2 Making Small Corrections 3-11
3.4.3 More Corrections: Operators 3-12
3.4.4 Operating on Lines 3-12
3.4.5 Undo 3-13
3.4.6 Summary of Insert/Delete Functions 3-13

3.5 MOVING, REARRANGING, AND DUPLICATING TEXT 3-13
3.5.1 Low Level Character Motions 3-13
3.5.2 Higher-Level Text Objects 3-14
3.5.3 Rearranging and Duplicating Text 3-15

viii

,/- .. --....,.

o

o

o

o

o

3.5.4 Summary of Higher-Level Motions and
Objects 3-17

3.6 HIGH LEVEL CO!vfMANDS 3-17
3.6.1 Writing, Quitting, Editing New Files 3-17
3.6.2 Escaping to a Shell 3-17
3.6.3 Marking and Returning· 3-18
3.6.4 Adjusting the Screen 3-18

3.7 ADVANCED TOPICS 3-18
3.7.1 Editing on Slow Terminals 3-19
3.7.2 Options, Set, and Editor Startup Files 3-20
3.7.3 Recovering Lost Lines 3-21
3.7.4 Recovering Lost Files 3-21
3.7.5 Continuous Text Input 3-22
3.7.6 Features for Program Editing 3-22
3.7.7 Filtering Portions of the Buffer 3-23
3.7.8 Commands for Editing LISP 3-23
3.7.9 Macros 3-24

3.8 ABBREVIATIONS 3-25
3.8.1 Word Abbreviations 3-25
3.8.2 Editor Command Abbreviations 3-25

3.9 MORE DETAILS 3-25
3.9.1 Line Representation in the Display 3-26
3.9.2 Counts 3-26
3.9.3 . More File Manipulation Commands 3-27
3.9.4 More About Searching for Strings 3-28
3.9.5 More About Input Mode 3-29
3.9.6 Uppercase Only Terminals 3-30
3.9.7 Vi and ex 3-30
3.9.8 Open Mode: vi on Hardcopy Terminals and

"Glass TTY's" 3-31
3.10 A SUMMARY OF VI COMMANDS 3-31

3.10.1 Entry and Exit 3-32
3.10.2 Cursor and Page Motion 3-33
3.10.3 Searches 3-36
3.10.4 Text Insertion 3-37
3.10.5 Text Deletion 3-37
3.10.6 Text Replacement 3-38
3.10.7 Moving Text 3-38
3.10.8 Miscellaneous Commands 3-40
3.10.9 Special Insert Characters 3-41
3.10.10 ":" Commands 3-42
3.10.11 Special Arrangements for Startup 3-43
3.10.12 Set Commands 3-43

4. An Introduction to the DM Editor 4-1
4.1 THE DISPLAY MANAGER EDITOR 4-1
4.2 OPENING AN EDIT PAD 4-2
4.3 SAVING THE CONTENTS OF AN EDIT PAD 4-3
4.4 EDIT PAD MODES 4-3

ix

4.5 INSERTING CHARACTERS 4-4
4.5.1 Inserting a Text String 4-4
4.5.2 Inserting an End-of-File Mark 4-5
4.5.3 Inserting a TAB 4-5

4.6 DELETING TEXT 4-5
4.6.1 Deleting Characters 4-5
4.6.2 Deleting Words 4-5
4.6.3 Deleting Lines 4-6

4.7 DEFINING A RANGE OF TEXT 4-6
4.8 COPYING, CUTTING, AND PASTING TEXT 4-6

4.8.1 Using Paste Buffers 4-6
4.8.2 Copying Text 4-7
4.8.3 Cutting Text 4-7
4.8.4 Pasting Text 4-8

4.9 USING REGULAR EXPRESSIONS 4-8
4.10 SEARCHING FOR TEXT 4-8

4.10.1 Case Sensitivity 4-9
4.10.2 Cancelling a Search Operation 4-9

4.11 SUBSTITUTING TEXT 4-10
4.11.1 Substituting All Occurrences of a String 4-10
4.11.2 Substituting the First Occurrence of a String 4-10
4.11.3 Changing the Case of Letters 4-10

4.12 UNDOING PREVIOUS COMMANDS 4-10

x

('
'- . ./

o

o

o

o

Chapter 1: An ed Tutorial

1.1 INTRODUCTION

Ed is a line-oriented text editor that supports a wide variety of terminals
(including all DOMAIN nodes running DOMAIN/IX. It allows the interac­
tive creation and modification of text based on your directions. The text
may be a document, a program, or perhaps data for a program.

This introduction is meant to simplify learning ed. The recommended
way to learn ed is to read this document", and simultaneously use ed to
follow the examples. Then, read the description of ed in the
DOMAIN/ IX Command Reference.

As you read this chapter, we recommend that you also do the exercises.
They cover material not completely discussed in the actual text. There
is a summary of ed commands at the end of this chapter.

Since this chapter is an introduction and a tutorial, no attempt is made
to cover more than a part of the facilities that ed offers (although this
fraction includes the most frequently used parts). Since there is not
enough space here to explain basic UNIX procedures, we will assume that
you know how to log in to a UNIX shell, and that you have a general
understanding of a file.

1.2 STARTING ED

Once you log in, you may invoke ed in any shell window by typing

ed
I RETURN I

You are now ready to go - ed is waiting for your instructions.

Note: You may invoke ed in either a Bourne Shell or a C Shell
using the procedure shown above. Also, you may invoke ed
in an AEGIS Shell by either typing

or setting the AEGIS Shell's command search rules to include
/ bin, then typing

ed
I RETURN I

as shown in the first example above.

ed Tutorial 1-1

SECTION 1 Editors

1.3 CREATING TEXT [a]
Suppose you want to create some text starting from scratch. Perhaps
you are typing the very first draft of a paper; clearly, it will have to start
somewhere, and undergo modifications later. This section will show how
to create some text, just to get started. Later we'll talk about how to
change text.

When you first start ed, it 'is like working with a blank piece of paper -
there is no text or information present. You must supply the text. Usu­
ally, this is done by typing in the text, or by reading it into ed from a
file. In this example, we will type in some text. Later, we will return to
learn how to read files.

First a bit of terminology. In ed jargon, the text being worked on is said
to be "kept in a buffer." Think of the buffer as a work space, if you like,
or simply as the information that you are going to be editing. In effect
the buffer is like the piece of paper, on which we will write things, then
change some of them, and finally file the whole thing away for another
day.

You tell ed what to do to your text by typing instructions called "com­
mands." Most commands consist of a single letter, which must be typed
in lowercase. Each ed command is typed on a separate line. (Sometimes
the command is preceded by information about what line or lines of text
are to be affected. We will discuss this shortly.) Ed makes no response
to most commands; there is no prompting or typing of messages like
"ready". (This silence is preferred by experienced users, but sometimes
presents a problem for beginners.)

The first command is append, written as the letter

a

all by itself. It means "append (or add) text lines to the buffer, as I type
them in." Appending is rather like writing fresh material on a piece of
paper.

So to enter lines of text into the buffer, just type an a followed by a
RETURN, followed by the lines of text you want, like this:

a
Now is the time
for all good men
to come to the aid of their party.

The only way to stop appending is to type a line that contains only a
period. The"." is used to tell ed that you have finished appending. If
ed seems to be ignoring you, type an extra line with just"." on it. You
may find you've added some extra lines to your text, which you'll have to
take out later.

1-2 ed Tutorial

o

o

o

o

o

SECTION 1 Editors

When the append command is done, the buffer will contain the three
lines

Now is the time
for all good men
to come to the aid of their party.

The "a" and"." aren't there, because they are not text.

To add more text, just issue another a command, and continue typing.

1.4 ERROR MESSAGES [?]
If at any time you make an error in the commands you type to ed, it will
tell you by displaying

?

The editor's response does not explain your error; make certain you are
entering a valid command.

1.5 WRITING TEXT TO A FILE [w]
It's likely that you'll want to save your text for later use. To write out
the contents of the buffer onto a file, use the write command

w

followed by the filename you want to write on. This will copy the
buffer's contents onto the specified file (destroying any previous informa­
tion on the file). To save the text on a file named practice, for example,
type

w practice

Leave a space between wand the file name. Ed responds by printing
the number of characters it wrote out. In this case, ed would respond
with

68

(Remem ber that blanks and the RETURN character at the end of each
line are included in the character count.) Writing a file just makes a copy
of the text; the buffer's contents are not disturbed, so you can go on
adding lines to it. This is an important point. Ed always works on a
copy of a file, rather than on the file itself. No change in the contents of
a file takes place until you give a w command.

Note: Writing out the text onto a file from time to time as it is
being created is a good idea. That way, if the system crashes
or if you make some horrible mistake, you will only lose the
text currently in the buffer. Text that has been written to a
file is relatively safe.

ed Tutorial 1-3

SECTION 1 Editors

1.6 LEAVING ed [q]
To terminate an ed session, save your text by writing it onto a file using
the w command, and then type the command

q

which stands for quit. The system will respond by returning control to
the Shell, which will display its prompt character. At this point your
buffer vanishes, with all its text, which is why you want to write it out
before quitting.

Note: Actually, ed will print? if you try to quit without writing.
At that point, write if you want; if not, typing another q will
get you out.

1.6.1 Exercise 1

Enter ed and create some text using

a
lines of text
lines of text
lines of text

Write it out using w. Then leave ed by giving it the q command. After
you return to the Shell, print the file, to see the results.

1.7 READING TEXT FROM A FILE [e]

A common way to get text into the buffer is to read it from a file in the
file system. This is what you do to edit text that you saved with the w
command in a previous session. The edit command e puts the entire
contents of a file into the buffer. So if you had saved the three lines
"Now is the time", etc., with a w command in an earlier session, the ed
command

e practice

would fetch the entire contents of the file "practice" into the buffer, and
respond

68

- the number of characters in "practice."

Note: If anything is already in the buffer when you do an e, it will
be overwritten (deleted).

If you use the e command to read a file into the buffer, then you need
not use a file name after a subsequent w command; ed remembers the
last file name used in an e command, and w will write on this file. Thus"

1-4 ed Tutorial

f"',
I,

\
'-.,-_.-/

u

o

o

o

o

SECTION 1 Editors

a good way to operate is

ed
e file
editing session
w
q

This way, you can simply say w from time to time and be secure in the
knowledge that as long as you used the correct file name with e, you are
writing into the proper file each time.

You can find out at any time what file name ed is remembering by typ­
ing the file command f. In this example, if you typed

f

ed would reply

practice

1.8 READING TEXT FROM A FILE [r]

Sometimes you want to read a file into the buffer without destroying
anything that is already there. This is done by the read command r.
The command

r practice

will read the file "practice" into the buffer; it adds it to the end of what­
ever is already in the buffer. If you do a read after an edit:

e practice
r practice

the buffer will contain two copies of the text (six lines).

Now is the time
for all good men
to come to the aid of their party.
Now is the time
for all good men
to come to the aid of their party.

Like the wand e commands, r prints the number of characters read in,
after the reading operation is complete.

Generally speaking, r is used less than e.

1.8.1 Exercise 2

Experiment with the e command - try reading and printing various files.
You may get an error ?name, where name is the name of a file; this
means that the file doesn't exist, typically because you spelled the file
name wrong, or perhaps because you are not allowed to read or write on
it. Try alternately reading and appending to see that they work

ed Tutorial 1-5

SECTION 1

similarly. Verify that

ed filename

is exactly equivalent to

ed
e filename

What does

f filename

do?

Editors

1.9 PRINTING THE CONTENTS OF THE BUFFER [p]

To print or list the contents of the buffer (or parts of it) on the terminal,
use the print command

P

To do this, specify the lines where you want printing to begin and where
you want it to end, separated by a comma, and followed by the letter p.
Thus to print the first two lines of the buffer, for e~ample, (that is, lines
1 through 2) say

1,2p

(Starting line=l, ending line=2, print.) Ed will respond with

Now is the time
for all good men

If you wanted to print all the lines in the buffer, you could use 1,3p as
above if you knew there were exactly 3 lines in the buffer. But in gen­
eral, you don't know how many there are, so what do you use for the
ending line number? Ed provides a shorthand symbol for "line number
of last line in buffer" - the dollar sign $. Use it this way:

1,$p

This will print all the lines in the buffer (line 1 to last line.) If you want
to stop the printing before it is finished, type iI. This sends ed an inter­
rupt, causing it to display its

?

prompt and wait for the next command.

To print the last line of the buffer, you could use

$,$p

but ed lets you abbreviate this to

$p

You can print any single line by typing the line number followed by a p.

1-6 ed Tutorial

\.

o

o

o

o

o

SECTION 1

Thus

Ip

produces the response

Now is the time

which is the first line of the buffer.

Editors

In fact, ed lets you abbreviate even further: you can print any single line
by typing just the line number. There is no need to type the letter p.
So, if you say

$

ed will print the last line of the buffer.

You can also use $ in combinations like

$-I,$p

which prints the last two lines of the buffer.

1.9.1 Exercise 3

As before, create some text using the a command, then experiment with
the p command. You will find, for example, that you can't print line 0
or a line beyond the end of the buffer, and that attempts to print a
buffer in reverse order by saying

3,lp

don't work.

1.10 THE CURRENT LINE [.]

Suppose your buffer still contains the six lines that you have just typed

1,3p

and ed has printed the three lines for you. Try typing just

p

with no line numbers. This will print

to come to the aid of their party.

which is the third line of the buffer. In fact, it is the last (most recent)
line that you have done anything with. You can repeat this p command
without line numbers, and it will continue to print line 3.

This is because ed maintains a record of the last line you did anything to
(in this case, line 3, which you just printed). This most recent line is
referred to by the shorthand symbol

(pronounced "dot"). Dot is a line number in the same way that $ is; it

ed Tutorial 1-7

SECTION 1 Editors

means exactly "the current line," or loosely, "the line you most recently I
did something to." You can use it in several ways. One possibility is to
say

.,$p

This will print all the lines from (including) the current line to the end of
the buffer. In our example, these are lines 3 through 6.

Some commands change the value of dot, while others do not. The p
command sets dot to the number of the last line printed; the last com­
mand will set both . and $ to 6.

Dot is most useful when used in combinations like this one:

.+1

(or equivalently, .+lp). This means "print the next line" and is a handy
way to step slowly through a buffer. You can also say

.-1 (or .-lp)

which means "print the line before the current line." This enables you to
go backwards if you wish. Another useful combination is something like

.-3,.-lp

which prints the previous three lines.

Don't forget that all of these commands change the value of dot. You
can find out what dot is at any time by typing

.=
Ed will respond by printing the value of dot.

Let's summarize some things about the p command and dot. Essentially,
p can be preceded by 0, 1, or 2 line numbers. If there is no line number
given, it prints the "current line," the line that dot refers to. If there is
one line number given (with or without the letter p), it prints that line
and sets dot to it; and if there are two line numbers, it prints all the lines
in that range (and sets dot to the last line printed.) If two line numbers
are specified, the first can't be bigger than the second. (See Exercise 2.)

Typing a single return will cause printing of the next line - it's
equivalent to .+lp. Try it. Try typing a -; you will find that it's
equivalent to .-lp.

1.11 DELETING LINES [d]

Suppose you want to get rid of the three extra lines in the buffer. This is
done by the delete command d. The d command deletes lines instead of
printing them, but is otherwise similar to p. The lines to be deleted are
specified for d exactly as they are for p:

1-8 ed Tutorial

c·

(~
\

------------------ ----------------------

o

o

o

o

SECTION 1 Editors

starting line, ending line d

Thus, the command

4,$d

deletes lines 4 through the end. Now there are three lines left, as you
can check by using

1,$p

Notice that $ now is line 3. Dot is set to the next line after the last line
deleted, unless the last line deleted is the last line in the buffer. In that
case, dot is set to $.

1.11.1 Exercise 4

Experiment with a, e, r, w, p and d until you are sure that you know
what they do, and until you understand how dot, $, and line numbers are
used.

Try using line numbers with a, rand w as well. You will find that a
will append lines after the line number that you specify (rather than
after dot); that r reads a file into the buffer after the line number you
specify (not necessarily at the end of the buffer); and that w will write
out exactly the lines you specify, not necessarily the whole buffer. These
variations are sometimes handy. For instance, you can insert a file at the
beginning of a buffer by saying

Or filename

and you can enter lines at the beginning of the buffer by saying

Oa
... text . ..

Notice that .w is very different from

w

1.12 MODIFYING TEXT [s]

The s (substitute) command is used to change individual words or letters
within a line or group of lines. You can use it to correct spelling mis­
takes and typing errors.

Suppose that due to a typing error, line 1 says

Now is th time

- the "e" has been omitted from "the." You can use s to fix this, as
shown below

ls/th/the/

ed Tutorial 1-9

SECTION 1 Editors

This says: "in line 1, substitute for the characters th the characters the
.". To verify that it works, use the

p

command. Ed will print the line, which should now read

Now is the time

Notice that ed set "dot" to the line where the substitution took place.
We know this because the p command printed that line. Dot is always
set this way when you use the s command.

The general way to use the substitute command is

starting_line#, ending_line# s/ change this/ to this/

Whatever string of characters is between the first pair of slashes is
replaced by whatever is between the second pair, in all the lines between
starting_line# and ending_line#. Only the first occurrence on each line
is changed, however. If you want to change every occurrence, see Exer­
cise 5. The rules for line numbers are the same as those for p, except
that dot is set to the last line changed.

Note: If no substitution took place, dot is not changed. This causes
an error message (?) to be printed as a warning.

Th us you can say

1 ,$s / speling/ spelling/

and correct the first spelling mistake on each line in the text. If there
were a second (or a third) instance of "speling" on any line, it would not
be corrected.

If no line numbers are given, the s command assumes you mean "make
the substitution on line dot", so it changes things only on the current
line. This leads to the very common sequence

s/ something/ something else/p

which makes some correction on the current line, and then prints it, so
you can see if the substitution worked out right. If it didn't, you can try
again. (Notice that there is a p on the same line as the s command.
With few exceptions, p can follow any command; no other multi­
command lines are legal.)

It's also legal to say

s/ string/ /

which means "change string to nothing," which is the same as saying
"delete string." This is useful for deleting extra words in a line or remov­
ing extra letters from words. For instance, if you had

1-10 ed Tutorial

/"~,

(

\~--'

o

o

o

o

o

SECTION 1 Editors

Nowxx is the time

you can say

s/xx//p

to get

Now is the time

Notice that / / (two adjacent slashes) means "no characters", not a
blank.

1.12.1 Exercise 5

Experiment with the substitute command. See what happens when you
substitute for some word on a line with several occurrences of that word.
For example, do this:

a
the other side of the coin

s/the/on the/p

You will get

on the other side of the coin

A substitute command changes only the first occurrence of the first
string .. You can change all occurrences by adding a g (for "global") to
the s command, like this:

s/ stringl/ string2/gp

Try other characters instead of slashes to delimit the two sets of charac­
ters in the s command - any character other than the blank or the tab
should work.

(If you get funny results using any of the characters

".$[*\&
read the section on "Special Characters.")

1.13 CONTEXT SEARCHING

Suppose you have the original three line text in the buffer:

Now is the time
for all good men
to come to the aid of their party.

And suppose you want to find the line that contains "their" because you
want to change it to "the." Since there are only three lines in the buffer,
it's pretty easy to keep track of what line the word "their" is on. But if
the buffer contained several hundred lines, and you'd been making
changes, deleting and rearranging lines, and so on, it wouldn't be easy to

ed Tutorial 1-11

SECTION 1 Editors

know what text was on a given line. Context searching is simply a
method of specifying the desired line by specifying some of the text
that's on the line, rather than specifying its line number.

The way to say "search for a line that contains this particular string of
characters" is to type

I this particular string of charactersl

delimited, as above, by slashes. For example, the ed command

Itheirl

is a context search which is sufficient to find the desired line; it will
locate the next occurrence of the characters between slashes ("their"). It
also sets dot to that line and prints the line for verification:

to come to the aid of their party.

"Next occurrence" means that ed starts looking for the string at line
.+1 (dot plus one), searches to the end of the buffer, then continues at
line 1 and searches to line dot. (That is, when the search reaches line $
it "wraps around" to line 1 and continues searching.) It scans all the
lines in the buffer until it either finds the desired line or gets back to dot
again. If the given string of characters can't be found in any line, ed
types the error message

?

Otherwise, it prints the first line in which the specified text appears.

You can combine the search for the desired line with the substitution
using the syntax below.

Itheir Is/their /the/p

which will yield

to come to the aid of the party.

There were three parts to that last command.

1. context search for the desired line

2. make the substitution

3. print the line

The expression Itheir / is a context search expression. In essence, all
context search expressions are like this - a string of characters delimited
by slashes. Context searches are interchangeable with line numbers, so
they can be used by themselves to find and print a desired line, or as line
numbers for some other command, like s. They were used both ways in
the examples above.

Suppose the buffer contains the three familiar lines

1-12 ed Tutorial

c

c'

o

o

o

o

-------- .. -------~-~~~-~~-~~~~~~-

SECTION 1 Editors

Now is the time
for all good men
to come to the aid of their party.

Then the ed line n um bers

/Now/+1
/good/
/party/-1

are all context search expressions, and they all refer to the same line (line
2). To make a change in line 2, you could say

/Now /+ls/good/bad/

or

/good/s/good/bad/

or

/party/-1s/good/bad/

The choice is dictated only by convenience. You could print all three
lines by typing

/Now / ,/party /p

or

/Now / ,/Now / +2p

or by any number of similar combinations. The first one of these might
be better if you don't know how many lines are involved. (Of course, if
there were only three lines in the buffer, you'd use

1,$p

but not if there were several hundred.)

The basic rule is: a context search expression is the same as a line
number, so it can be used wherever a line number is needed.

1.13.1 Exercise 6

Experiment with context searching. Try a body of text with several
occurrences of the same string of characters, and scan through it using
the same context search.

Try using context searches as line numbers for the substitute, print, and
delete commands. (They can also be used with r, w, and a.)

Try context searching using ?text? instead of / text /. This scans lines
in the buffer in reverse order. This is sometimes useful if you go too far
while looking for some string of characters; it's an easy way to back up.
(If you get funny results with any of the characters

A.$[*\&

ed Tutorial 1-13

SECTION 1 Editors

read the section on "Special Characters.")

Ed provides a shorthand for repeating a context search for the same
string. For example, the ed line number

/ string/

will find the next occurrence of string. It often happens that this is not
the desired line, so the search must be repeated. This can be done sim­
ply by typing

II
This shorthand stands for "the most recently used context search expres­
sion." It can also be used as the first string of the substitute command,
as in

/ stringl/s/ / string2/

which will find the next occurrence of stringl and replace it by string2.
This can save a lot of typing. Similarly,

??

means "scan backwards for the same expression."

1.14 CHANGE [c] AND INSERT [i]
"Change", written as

c

is used to replace a number of lines with different lines, which are typed
in at the terminal. For example, to change lines .+1 through $ to some­
thing else, type

.+l,$c

... type the lines of text you want here . ..

The lines you type between the c command and the • will take the place
of the original lines between start line and end line. This is most useful
in replacing a line or several lines that have errors in them.

If only one line is specified in the c command, then just that line is
replaced. (You can type in as many replacement lines as you like.)
Notice the use of. (dot) to end the input; this works just like the. in
the append command and must appear by itself on a new line. If no line
num ber is given, line dot is replaced. The value of dot is set to the last
line you typed.

"Insert" is similar to append; for instance,

1-14 ed Tutorial

/~
I

"'-----

o

o

o

o

-----------------_._------------------------------------

SECTION 1 Editors

/string/i
· .. type the lines to be inserted here . ..

will insert the given text before the next line that contains string. The
text between i and. is inserted before the specified line. If no line
number is specified, dot is used. Dot is set to the last line inserted.

1.14.1 Exercise 7

"Change" is rather like a combination of delete followed by insert.
Experiment to verify that

start, end d
i
· .. text ..

is almost the same as

start, end c
· .. text ..

These are not precisely the same if line $ gets deleted. Check this out.
What is dot?

Experiment with a and i, to see that they are similar, but not the same.
You will observe that

line-number a
· .. text . ..

appends after the given line, while

line-number i
· .. text . ..

inserts before it. If no line number is given, i inserts before line dot,
while a appends after line dot.

1.15 MOVING TEXT [m]

The move command m is used for cutting and pasting; it lets you move
a group of lines from one place to another in the buffer. Suppose you
want to move the first three lines of the buffer to the end of the buffer.
You could do it by saying:

1,3w temp
$r temp
1,3d

but you can do it a lot easier with the m command:

ed Tutorial 1-15

SECTION 1 Editors

1,3m$

The general case is

start line, end line m after this line

Notice that there is a third line specified - where to move the text. Of
course, the lines to be moved can be specified by context searches; if you
had

First paragraph

end of first paragraph.
Second paragraph

end of second paragraph.

you could reverse the two paragraphs:

/Second/ ,/end of second/m/First/-1

Notice the -1: the moved text goes after the line mentioned. Dot gets
set to the last line moved.

1.16 THE GLOBAL COMMANDS [g, v]
The global command g is used to execute one or more ed commands on
all the lines in the buffer that match some specified string. For ,example,

g/peling/p

prints all lines that contain "peling". More usefully,

g/peling/s/ /pelling/gp

makes the substitution everywhere on the line, then prints each corrected
line. Compare this to

1 ,$s / peling/ pelling/ gp

which only prints the last line substituted. Another subtle difference is
that the g command does not return a? if, for example, "peling" is not
found. In the same circumstances, the s command will return a question
mark.

There may be several commands (including a, c, i, r, w, but not g); in
that case, every line except the last must end with a backslash \:

g/xxx/ .-ls/abc/def/N
.+2s/ghi/jkl/N
.-2,.p

makes changes in the lines before and after each line that contains
"xxx", then prints all three lines.

The v command is the same as g, except that the commands are exe­
cuted on every line that does not match the string following v:

1-16 ed Tutorial

-------------------------------- .-----

o

o

o

o

o

SECTION 1 Editors

vi Id
deletes every line that does not contain a blank.

1.17 SPECIAL CHARACTERS

You may have noticed unexpected results when you used such characters
as ., *, $, and others in context searches and the substitute command.
The reason is rather complex, although the cure is simple. Basically, ed
treats these characters as special, with special meanings. For instance, in
a context search or the first string of the substitute command only, •
means "any character," not a period, so

Ix·yl
means "a line with an x, any character, and ay," not just "a line with
an x, a period, and a y." The following special characters can cause prob­
lems if not used correctly.

".$[*\

Note: The backslash character \ is special to ed. If possible, avoid
using it.

If you have to use one of the special characters in a substitute command,
you can turn off its special meaning temporarily by preceding it with the
backslash. Thus

s 1\ \ \. \ * Ibackslash dot star /

will change \. * into "backslash dot star".

Here is a synopsis of the other special characters. First, the circumflex "
signifies the beginning of a line. Thus

I "string/

finds string only if it is at the beginning of a line; it will find "string of
pearls" but not "the string handler". The dollar sign $ is just the oppo­
site of the circumflex; it means the end of a line:

I string$/

will only find an occurrence of string that is at the end of some line.
This implies, of course, that

/" string$/

will find only a line that contains just string, and

finds a line containing exactly one character.

The character ., as we mentioned above, matches anything;

ed Tutorial 1-17

SECTION 1

/x.y/
matches any of

x+y
x-y
xy
x.y

Editors

This is useful in conjunction with *, which is a repetition character; a * is
a shorthand for "any number of a's," so .* matches any number of any
characters. This is used like this:

s/.* / stuff/

which changes an entire line, or

s/.*,//
which deletes all characters in the line up to and including the last
comma. (Since. * finds the longest possible match, this goes up to the
last comma.)

Brackets are used to delimit "character classes"; for example,

/ [OI2345678g]/

matches any single digit; anyone of the characters inside the braces will
cause a match. This can be abbreviated to [0-9].

Finally, the & is another shorthand character. It is used only on the
right-hand part of a substitute command where it means "whatever was
matched on the left-hand side". It is used to save typing. Suppose the
current line contained

Now is the time

and you wanted to put parentheses around it. You could just retype the
line, or you could say

s/"/(/
s/$/)/

using your knowledge of A and $. But the easiest way is to use the &:

s/.* /(&)/
This says "match the whole line, and replace it by itself surrounded by
parentheses." The & can be used several times in a line; consider using

s/.* / &? &!!/

to produce

Now is the time? Now is the time!!

You don't have to match the whole line, of course. If the buffer contains

1-18 ed Tutorial

-------------------_•.... - ..

o

o

o

o

o

SECTION 1 Editors

the end of the world

you could type

/world/s/ / & is at hand/

to produce

the end of the world is at hand

Examine this expression carefully. It illustrates how to take advantage of
ed to save typing. The string / world/ found the desired line; the short­
hand / / found the same word in the line; and the & saves you from typ­
ing it again.

The & is a special character only within the replacement text of a substi­
tute command, and has no special meaning elsewhere. You can turn off
the special meaning of & by preceding it with a \:

s/ ampersand/\&/

will convert the word "ampersand" into its literal symbol & in the
current line.

1.18 SUMMARY OF COMMANDS AND LINE NUMBERS

The general form of ed commands is the command name, perhaps pre­
ceded by one or two line numbers, and, in the case of e, r, and w, fol­
lowed by a file name. Only one command is allowed per line, but a p
command may follow any other command (except for e, r, wand q).

a Append, that is, add lines to the buffer (at line dot, unless a
different line is specified). Appending continues until. is typed as
the first character on a new line. Dot is set to the last line
appended.

c Change the specified lines to the new text which follows. The new
lines are terminated by a ., as with a. If no lines are specified,
replace line dot. Dot is set to the last line changed.

d Delete the lines specified. If none are specified, delete line dot.
Dot is set to the first undeleted line, unless $ is deleted, in which
case dot is set to $.

e Edit new file. Any previous contents of the buffer are thrown
away, so issue a w beforehand.

f Print remembered filename. If a name follows f, the remembered
name will be set to it.

g The command

g/---/ commands

will execute the commands on those lines that contain ---, which
can be any context search expression.

ed Tutorial 1-19

SECTION 1 Editors

i Insert lines before the specified line (or dot) until a . is typed as
the first character on a new line. Dot is set to the last line
inserted.

m Move lines specified to after the line named after m. Dot is set to
the last line moved.

p Print specified lines. If none are specified, print line dot. A single
line number is equivalent to line number p. A single return prints
.+1, the next line.

q Quit ed. Wipes out all the text in the buffer if you enter it twice
in a row without first entering a w command.

r Read a file into the buffer (at the end unless specified elsewhere.)
Dot is set to the last line read.

s

v

w

The command

sl stringl1 string21

substitutes the characters stringl into string2 in the specified lines.
If no lines are specified, the command makes the substitution in
line dot. Dot is set to be the last line in which a substitution took
place, which means that if no substitution took place, dot is not
changed. s changes only the first occurrence of string1 on a line;
to change all of them, type a g after the final slash.

The command

v 1---/ commands

executes commands on the lines that do not contain ---.

Writes out the buffer onto a file. Dot is not changed.

Print value of dot. =(by itself prints the value of $.)

The line

! command-line

causes the command-line to be passed to the Shell and executed.

/ ... 1 Context search, which searches for the next line that contains this
string of characters, and prints it. Dot is set to the line where the
string was found. Search starts at .+1, wraps around from $ to 1,
and continues to dot, if necessary.

? ••• ? Context search in reverse direction; starts search at .-1, scans to
1, and wraps around to $.

1-20 ed Tutorial

\
,,-.-,~ '

c

------------------_ .. __ ._ _ .. _ .. _ .. -

o

o

o

SECTION 1 Editors

Chapter 2: The ex Reference Manual

2.1 INTRODUCTION

Ex is a line-oriented text editor that supports both command- and
display-oriented editing. This chapter describes the command-oriented
part of ex; the display editing features of ex are described in Chapter 3
of this section, An Introduction to Display Editing with Vi.

This chapter is based on the original ex reference manual written at the
University of California at Berkeley.

2.2 USAGE

Each version of the editor has a set of options, which you can customize.
The command edit invokes a version of ex designed for more casual or
beginning users by changing the default settings of some of these options.
To simplify the description which follows we assume the default settings
of the options.

When invoked, ex determines the terminal type from the TERM variable
in the environment. If there is a TERMCAP variable in the environ­
ment, and the type of the terminal described there matches the TERM
variable, then that description is used. Also, if the TERMCAP variable
contains a pathname (beginning with a I), then the editor will seek the
description of the terminal in that file (rather than the default
/etc/termcap.) If there is a variable EXINIT in the environment, then
the editor will execute the commands in that variable; otherwise, if there
is a file. exrc in your HO:tv1E directory, ex reads commands from that file,
simulating a source command. Option setting commands placed in
EXINIT or . exrc will be executed before each editor session.

A command to enter ex has the following prototype.

ex [-] [-v] [-t tag] [-r] [-I] [-wn] [-R] [+command] filename(s)

The most common case edits a single file with no options.

ex filename

The - command line option suppresses all interactive-user feedback. It is
useful when processing editor scripts in command files. The -v option is
equivalent to using vi rather than ex. The -t option is equivalent to an
initial tag command, editing the file containing the tag and positioning
the editor at its definition. The -r option is used in recovering after an
editor or system crash, retrieving the last saved version of the named file
or, if no file is specified, typing a list of saved files. The -I option sets up
for editing LISP. It sets the showmatch and lisp options. The-w

ex 2-1

SECTION 1 Editors

option sets the default window size to n, and is useful on dial ups to start
in small windows. The -R option sets the readonly option at the start.
filename arguments indicate files to be edited. An argument of the form
+command indicates that the editor should begin by executing the
specified command. If command is omitted, then it defaults to "$", posi­
tioning the editor at the last line of the first file initially. Other useful
commands here are scanning patterns of the form "/pat" or line
numbers, e.g. "+100" starting at line 100.

2.3 FILE MANIPULATION

2.3.1 Current File

Ex normally edits the contents of a single file, whose name is recorded in
the current file name. Ex performs all editing actions in a buffer (actu­
ally a temporary file) into which the text of the file is initially read.
Changes made to the buffer have no effect on the file being edited unless
and until the buffer contents are written out to the file with a write
command. Mter the buffer contents are written, the previous contents of
the written file are no longer accessible. When a file is edited, its name
becomes the current file name, and its contents are read into the buffer.

The current file is almost always considered to be edited. This means
that the contents of the buffer are logically connected with the current
file name, so that writing the current buffer contents onto that file, even
if it exists, is a reasonable action. If the current file is not edited, then
ex will not write on it, if it already exists.

Note: The file command will say" [Not edited]" if the current file is
not considered edited.

2.3.2 Alternate File

Each time a new value is given to the current file name, the previous
current file name is saved as the alternate file name. Similarly if a file is
mentioned but does not become the current file, it is saved as the alter­
nate file name.

2.3.3 Filename Expansion

Filenames within the editor may be specified using the normal Shell
expansion conventions. In addition, the character "%" in filenames is
replaced by the current file name and the character "#" by the alternate
file name.

Note:

2-2

This feature makes it easy to deal alternately with two files
and eliminates the need for retyping the name supplied on an
edit command after a No write since last change diagnostic is
received.

ex

o

o

o

C)

o

SECTION 1 Editors

2.3.4 Multiple Files and Named Buffers

If more than one file is given on the command line, then the first file is
edited as described above. The remaining arguments are placed with the
first file in the argument list. The current argument list may be
displayed with the args command. The next file in the argument list
may be edited with the next command. The argument list may also be
respecified by a list of names to the next command. These names are
expanded; the resulting list of names becomes the new argument list, and
ex edits the first file on the list.

For saving blocks of text while editing, and especially when editing more
than one file, ex has a group of named buffers. These are similar to the
normal buffer, except that only a limited number of operations are avail­
able on them. The buffers have names a through z.

Note: It is also possible to refer to A through Z; the upper case
buffers are the same as the lower, but commands append to
named buffers rather than replacing when upper case names
are used.

2.3.5 Read Only

It is possible to use ex in read only mode to look at files that you have
no intention of modifying. This mode protects you from accidentally
overwriting the file. Read only mode is on when the readonly option is
set. It can be turned on with the -R command line option, by the view
command line invocation, or by setting the readonly option. It can be
cleared by setting noreadonly. It is possible to write, even while in read
only mode. You can write to a different file, or can use the! form of
write, even while in read only mode.

2.4 EXCEPTIONAL CONDITIONS

2.4.1 Errors and Interrupts

When an error occurs, ex (optionally) rings the terminal bell and prints
an error diagnostic. If the primary input is from a file, editor processing
will terminate. If an interrupt signal is received, ex prints "Interrupt"
and returns to its command level. When the primary input is a file, then
ex will exit.

2.4.2 Recovering From Hangups and Crashes

If a hangup signal is received and the buffer has been modified since it
was last written out, or if the system crashes, either the editor (in the
first case) or the system (after it reboots in the second) will attempt to
preserve the buffer. The next time you log in you should be able to
recover the work you were doing. At most, you will lose a few lines of
changes from the last point before the hangup or editor crash. To
recover a file, you can use the -r option. If you were editing the file

ex 2-3

SECTION 1 Editors

resume, then you should change to the directory where you were when
the crash occurred, giving the command

ex -r resume

Mter checking that the retrieved file is intact, you can write it over the
previous contents of that file.

You should get mail from the system telling you when a file has been
saved after a crash. The command

ex -r

will print a list of files that have been saved for you. (In the case of a
hangup, the file will not appear in the list, although it can be recovered.)

2.5 EDITING MODES

Ex has five distinct modes. Of these, "command" mode is most often
used. Commands are entered in command mode when a ':' prompt is
present, and are executed each time a complete line is sent. In In "text
input" mode, ex gathers input lines and places them in the file. The
append, insert, and change commands use text input mode. No
prompt is printed when you are in text input mode. This mode is left by
typing a '.' alone at the beginning of a line, and command mode resumes.

The last three modes are open and visual modes, entered by the com­
mands of the same name, and, within open and visual modes "text "inser­
tion" mode. Open and visual modes are described in Chapter 3 of this
section.

2.6 COMMAND STRUCTURE

Most ex command names are English words, and the initial prefixes of
the words are acceptable abbreviations. Any ambiguity in abbreviations
is resolved in favor of the more commonly used commands. As an exam­
ple, the command substitute can be abbreviated s while the shortest
available abbreviation for the set command is see

2.7 COMMAND PARAMETERS

Most commands accept prefix addresses. These specify the lines in the
file upon which the command is to have an effect. The forms of these
addresses will be discussed below. A number of commands also may take
a trailing count specifying the number of lines to be involved in the com­
mand. These counts are rounded down if necessary. Thus the command
"lOp" will print the tenth line in the buffer while "delete 5" will delete
five lines from the buffer, starting with the current line.

Some commands take other information or parameters, which are always
given after the com,mand name. Examples of this would be option names
in a set command i.e. "set number", a file name in an edit command, a

2-4 ex

\
' •• 'M • -'

~
\
\

o

o

o

o

o

SECTION 1 Editors

regular expression in a substitute command, or a target address for a copy
command, i.e. "1,5 copy 25".

2.7.1 Command Variants

A number of commands have two distinct variants. The variant form of
the command is invoked by placing an "!" immediately after the com­
mand name. Some of the default variants may be controlled by options;
in this case, the "I" serves to toggle the default.

2.7.2 Flags After Commands

The characters "#", "p", and "1" may be placed after many commands.

Note: A "p" or "I" must be preceded by a blank or tab except in
the single special case "dp".

The operation specified by any of these characters will be executed after
the command completes. Since ex normally prints the new current line
after each change, the trailing "p" is rarely necessary. Any number of
"+" or "-" characters may also be given with these flags. If they
appear, the specified offset is applied to the current line value before the
printing command is executed.

2.7.3 Comments

The "begin comment" character is the double quote: ". Any ex com­
mand line beginning with " is ignored. Comments beginning with " may
also be placed at the ends of commands, except in cases where they could
be confused as part of text (Shell escapes and the substitute and map
commands).

2.7.4 Multiple Commands per Line

To place multiple commands on a line, separate each pair of commands
with the "I" character.

Note: The "global" commands, comments, and the Shell escape "!"
must be the last command on a line, as they are not ter­
minated by a 'I'.

2.7.5 Reporting Large Changes

Most commands which change the contents of the editor buffer give feed­
back if the scope of the change exceeds a threshold given by the report
option. This feedback helps to detect undesirably large changes, so that
they may be quickly and easily reversed with an undo. After commands
such as global or visual, you will be informed if the net change in the
number of lines in the buffer during this command exceeds the report
threshold.

ex 2-5

SECTION 1 Editors

2.8 COMMAND ADDRESSING

In this section, we summarize ex command addressing.

2.8.1 Addressing Primitives

(dot) The current line. Most commands leave the current line as
the last line which they affect. The default address for most com­
mands is the current line, thus "dot" is rarely used alone as an
address.

n The nth line in the editor's buffer, lines being numbered sequen-
tially from 1.

$ The last line in the buffer.

% An abbreviation for 1,$ (Le., the entire buffer).

+n -n An offset relative to the current buffer line. The forms .+3 +3
and +++ are all equivalent. If the current line is line 100, all
address line 103.

I patl Scan forward for a line containing pat. Pat may be a string or a
regular expression (as defined below).

? pat? Scan backward for a line containing pat. Pat may be a string or a
regular expression (as defined below).

Note: The scans normally wrap around the end of the buffer.
If all that is desired is to print the next line containing
pat, then the trailing I or ? may be omitted. If pat is
omitted or explicitly empty, then the last regular
expression specified is located. The forms \1 and \?
scan using the last regular expression used in a scan;
after a substitute, I I and ?? would scan using the
substitute's regular expression.

, x Before each non-relative motion of the current line'.', the previ­
ous current line is marked with a tag, subsequently referred to as
, ' , '. This makes it easy to refer or return to this previous con­
text. Marks may also be established by the mark command,
using single lower case letters x and the marked lines referred to
as " x'.

2.8.2 Combining Addressing Primitives

Addresses to commands consist of a series of addressing primitives,
separated by ',' or ';'. Such address lists are evaluated left-to-"right.
When addresses are separated by';' the current line '.' is set to the value
of the previous addressing expression before the next address is inter­
preted. If more addresses are given than the command requires, then all
but the last one or two are ignored. If the command takes two
addresses, the first addressed line must precede the second in the buffer.
Null address specifications are permitted in a list of addresses, the default

2-6 ex

o

o

o

o

o

SECTION 1 Editors

in this case is the current line'.'; thus' ,100' is equivalent to '.,100'.

Note: It is an error to give a prefix address to a command which
expects none.

2.9 COMMAND DESCRIPTIONS

The following form is a prototype for all ex commands:

address command! parameters count flags

All parts are optional. When use without arguments, the command
prints the next line in the file. Whenused within "visual" (vi) mode, ex
ignores a ":" preceding any command.

In the following command descriptions, the default addresses are shown
in parentheses. These parentheses are not part of the command. Ab bre­
viations, where allowed, are shown at the beginning of the description, in
brackets, as in [able The brackets are not part of the abbreviation.

abbreviate word rhs [ab] Add the named abbreviation to the
current list. When in input mode in visual, if
word is typed as a complete word, it will be
changed to rhs.

(.) append

a!

args

(• , .) change count

c!

(• , •) copy addr flags

ex

[a] Reads the input text and places it after
the specified line. After the command, '.'
addresses the last line input or the specified
line if no lines were input. If address '0' is
given, text is placed at the beginning of the
buffer.

The variant flag to append toggles the set­
ting for the autoindent option during the
input of text.

The members of the argument list are
printed, with the current argument delimited
by '[' and ']'.

[c] Replaces the specified lines with the input
text. The current line becomes the last line
input; if no lines were input it is left as for a
delete.

The variant toggles autoindent during the
change.

[co] A copy of the specified lines is placed
after addr, which may be '0'. The current
line '.' addresses the last line of the copy.
The command t is a synonym for copy.

2-7

SECTION 1 Editors

(• , •) delete buffer count flags.

edit file

e! file

e+n file

file

2-8

[d] Removes the specified lines from the
buffer. The line after the last line deleted
becomes the current line; if the lines deleted
were originally at the end, the new last line
becomes the current line. If a named buffer is
specified by giving a letter, then the specified
lines are saved in that buffer or appended to
it if an upper case letter is used.

[e], [ex] Used to begin an editing session on a
new file. The editor first checks to see if the
buffer has been modified since the last write
command was issued. If it has been, a warn­
ing is issued and the command is aborted.
The command otherwise deletes the entire
contents of the editor buffer, makes the
named file the current file and prints the new
filename. After ensuring that this file is an
ASCII file, the editor reads the file into its
buffer.

If the file is read without error, the number of
lines and characters read is typed. if there
were any non-ASCII characters in the file, they
are stripped of their non-ASCII high bits, and
any null characters in the file are discarded.
If none of these errors occurred, the file is
considered edited. If the last line of the input
file is missing the trailing newline character, it
will be supplied and a complaint will be
issued. This command leaves the current line
, .' at the last line read. If executed from
within open or visual, the current line is ini­
tially the first line of the file.

The variant form of edit suppresses the com­
plaint about modifications having been made
and not written from the editor buffer, thus
discarding all changes which have been made
before editing the new file.

Causes the editor to begin at line n rather
than at the last line; n may also be an editor
command containing no spaces, e.g.: + / patl'.

[f] Prints the following: the current file name;
whether it has been '[Modified]' since the last
write command; whether it is read only; the

ex

c

o

o

o

o

o

SECTION 1

file file

Editors

current line; the number of lines in the buffer;
and the percentage of the way through the
buffer of the current line. In the rare case
that the current file is '[Not edited)" this is
noted also; in this case, you have to use the
form w! to write to the file, since the editor is
not sure that a write won't destroy some file
unrelated to the current contents of the
buffer.

The current file name is changed to file which
is considered' [Not edited)'.

(1 , $) global pat cmds [g] First marks each line among those
specified which matches the given regular
expression. Then the given command list is
executed with"." initially set to each marked
line.

g! /pat cmds

ex

The command list consists of the remaining
commands on the current input line and may
continue to multiple lines by ending all but
the last such line with a "\". If cmds (and
possibly the trailing / delimiter) is omitted,
each line matching pat is printed. Append,
insert, and change commands and associ­
ated input are permitted; the"." terminating
input may be omitted if it would be on the
last line of the command list. Open and
visual commands are permitted in the com­
mand list and take input from the terminal.

The global command itself may not appear
in cmds. The undo command is also not per­
mitted there, as undo instead can be used to
reverse the entire global command. The
options autoprint and auto indent are inhi­
bited during a global, and the value of the
report option is temporarily infinite, in defer­
ence to a report for the entire global.
Finally, the context mark" ' ,,, is set to the
value of "." before the global command
begins. It is not changed during a global
command, except perhaps by an open or
visual within the global.

[v] The variant form of global runs cmds at
each line not matching pat.

2-9

SECTION 1

(.) insert

.,
1.

Editors

[i] Places the given text before the specified
line. The current line is left at the last line
input; if there is no input, it is left at the line
before the addressed line. This command
differs from append only in the placement of
text.

The variant toggles autoindent during the
insert.

(. , .+ 1) join count flags [j] Places the text from a specified range of
lines together on one line. White space is
adjusted at each junction to provide at least
one blank character, two if there was a "." at
the end of the line, or none if the first follow­
ing character is a")". If there is already
white space at the end of the line, then the
white space at the start of the next line will
be discarded.

. ,
J.

(.) k x

(. , .) list count flags

map lhs rhs

(.) mark x

(. , .) move addr

2-10

The variant causes a simple join with no
white space processing; the characters in the
lines are simply concatenated.

The k command is a synonym for mark. It
does not require a blank or tab before the fol­
lowing letter.

Prints the specified lines in a more unambigu­
ous way: tabs are printed as "tI" and the end
of each line is marked with a trailing "$".
The current line is left at the last line printed.

The map command is used to define macros
for use in visual mode. Lhs should be a single
character, or the sequence "#n", where n is a
digit, referring to function key n. When this
character or function key is typed in visual
mode, it will be as though the corresponding
rhs had been typed. On terminals without
function keys, you can type "#n".

Gives the specified line mark x, a single lower
case letter. The x must be preceded by a
blank or a tab. The addressing form" 'x"
then addresses this line. The current line is
not affected by this command.

[m The move command repositions the
specified lines to be after addr. The first of
the moved lines becomes the current line.

ex

o

o

o

o

o

SECTION 1

next

n!

n filelist

n +command filelist

................. _- . -------------------

Editors

[n] The next file from the command line
argument list is edited.

The variant suppresses warnings about the
modifications to the buffer not having been
written out, discarding (irretrievably) any
changes which may have been made.

The specified filelist is expanded and the
resulting list replaces the current argument
list; the first file in the new list is then edited.
If command is given (it must contain no
spaces), then it is executed after editing the
first such file.

(. , .) number count flags [# or nul Prints each specified line preceded
by its buffer line number. The current line is
left at the last line printed.

(.) open flags

(•) open/ patl flags

preserve

(• , .) print count

(•) put buffer

ex

[0] Enters intraline editing open mode at
each addressed line. If pat is given, then the
cursor will be placed initially at the beginning
of the string matched by the pattern. To exit
this mode use Q. See Chapter 3 of this sec­
tion for more details.

The current editor buffer is saved as though
the system had just crashed. This command
is for use only in emergencies when a write
command has resulted in an error and you
don't know how to save your work. After a
preserve, you should seek help from a sys­
tem administrator.

[p or P] Prints the specified lines with non­
printing characters printed as control charac­
ters "tx"; delete (octal 177) is represented as
"t?". The current line is left at the last line
printed.

[pu] Puts back previously deleted or
yanked lines. Normally, used with delete to
effect movement of lines, or with yank to
effect duplication of lines. If no buffer is
specified, then the last deleted or yanked text
is restored, but no modifying commands may
intervene between the delete or yank and
the put, nor may lines be moved between
files without using a named buffer. By using

2-11

SECTION 1

quit

q!

(•) read file

(•) ,read! command

recover file

2-12

Editors

a named buffer, text may be restored that was
saved there at any previous time.

[q] Causes ex to terminate. No automatic
write of the editor buffer to a file is per­
formed. However, ex issues a warning mes­
sage if the file has changed since the last
write command was issued, and does not
quit. Ex will also issue a diagnostic if there
are more files in the argument list. Normally,
you want to save your changes, and you
should give a write command; if you want to
discard them, use the q! command variant.

Quits from the editor, discarding changes to
the buffer without complaint. I

[r] Places a copy of the text of the given file
in the editing buffer after the specified line. If
no file is given, the current file name is used.
The current file name is not changed unless
there is none, in which case, file becomes the
current name. The sensibility restrictions for
the edit command apply here also. If the file
buffer is empty and there is no current name,
then ex treats this as an edit command.
Address "0" is legal for this command and
causes the file to be read at the beginning of
the buffer. Statistics are given as for the edit
command when the read successfully ter­
minates. After a read, the current line is the
last line read. Within open and visual, the
current line is set to the first line read rather
than the last.

Reads the output of command into the buffer
after the specified line. This is not a variant
form of the command, rather a read specify­
ing a command rather than a filename; a
blank or tab before the Shell escape! is man­
datory.

Recovers file from the system save area. Used
after a system crash or accidental hangup.
Note that the system saves a copy of the file
you were editing only if you have made
changes to the file. If you are using preserve,
you will be notified by mail when a file is
saved.

ex

------------------- -------------- -----------

o

o

o

o

o

SECTION 1

rewind

rew!

set parameter

shell

source file

Editors

[rew] The argument list is rewound, and the
first file in the list is edited.

Rewinds the argument list discarding any
changes made to the current buffer.

With no arguments, prints those options
w hose values have been changed from their
defaults; with parameter all, it prints all of
the option values.

Giving an option name followed by a"?"
causes the current value of that option to be
printed. The "?" is unnecessary unless the
option is Boolean valued. Boolean options are
given values either by the form "set option"
to turn them on or "set nooption" to turn
them off; string and numeric options are
~signed via the form "set option=value".

More than one parameter may be given to
set; parameters are interpreted left-to-right.

[sh] A new Shell is created. When it ter­
minates, editing resumes.

[so] Reads and executes commands from the
specified file. Source commands may be
nested.

(. , .) substitute I patl repll options count flags

ex

[s] On each specified line, the first instance of
pattern pat is replaced by replacement pat­
tern repl. If the global indicator option char­
acter g appears, then all instances are substi­
tuted; if the confirm indication character c
appears, then before each substitution the line
to be substituted is typed with the string to
be substituted marked with'''' characters.
By typing a y, you can cause the substitution
to be performed. Any other input results in
no change. After a substitute the current
line is the last line substituted.

Lines may be split by substituting newline
characters into them. The newline in repl
must be escaped by preceding it with a \.
Other metacharacters available in pat and
repl are described below.

2-13

SECTION 1 Editors

stop Suspends the editor, returning control to the
top level Shell. If autowrite is set and there
are unsaved changes, a write is done first
unless the form stop! is used.

(• , .) substitute options count flags

(. , .) t addr flags

ta tag

unab breviate word

undo

2-14

[s] If pat and repl are omitted, then the last
substitution is repeated. This is a synonym
for the & command.

The t command is a synonym for copy.

The focus of editing switches to the location
of tag, switching to a different line in the
current file where it is defined, or if necessary
to another file.

Note: If you have modified the current
file before giving a tag command,
you must write it out; giving
another tag command, specifying
no tag will reuse the previous tag.

The tags file is normally created by a program
such as ctags, and consists of anum ber of
lines with three fields separated by blanks or
tabs. The first field gives the name of the
tag, the second the name of the file where the
tag resides, and· the third gives an addressing
form which can be used by the editor to find
the tag; this field is usually a contextual scan
using" I patl" to be immune to minor changes
in the file. Such scans are always performed
as if nomagic was set. The tag names in the
tags file must be sorted alphabetically.

[una] Delete word from the list of abbrevia­
tions.

[u] Reverses the changes made in the buffer
by the last buffer editing command. Note
that global commands are considered a single
command by undo (as are open and visual.)
Also, the commands write and edit which
interact with the file system cannot be
undone. Undo is its own inverse.

Undo always marks the previous value of the
current line"." as ", '''. After an undo the

ex

c

----------------- --------------

o

o

o

o

o

SECTION 1

unmap lhs

(1 , $) v / patl cmds

Edito~

current line is the first line restored or the line
before the first line deleted if no lines were
restored. For commands with more global
effect such as global and visual, the current
line regains its pre-command value after an
undo.

The macro expansion associated by map for
lhs is removed.

A synonym for the global command variant
g!, running the specified cmds on each line
which does not match pat.

version [vel Prints the current version number of the
editor as well as the date the editor was last
changed.

(.) visual type count jlags[vi] Enters visual mode at the specified line.

visual file

(1 , $) write file

ex

Type is optional and may be "-" , "A" or "."
as in the z command to specify the placement
of the specified line on the screen. By default,
if type is omitted, the specified line is placed
as the first on the screen. A count specifies an
initial window size; the default is the value of
the option window. See Chapter 3 of this sec­
tion, An Introduction to Display Editing with
Vi, for more details. To exit this mode, type
Q.

Also visual +n file From visual mode, this
command is the same as edit.

[w] Writes changes made back to file, print­
ing the number of lines and characters writ­
ten. When file is omitted, the text is written
back to the file named when the editor was
originally invoked. If a file is specified, then
text will be written to that file.

Note: The editor writes to a file only if it
is the current file and is edited, if
the file does not exist, or if the file
is actually a teletype, / dev/ tty,
/ dev/ null. Otherwise, you must
give the variant form w! to force
the write.

If the file does not exist it is created. The
current file name is changed only if there is
no current file name; the current line is never

2-15

- SECTION 1

(1 , $) write> > file

w! name

(1 , $) w ! command

wq name

wq! name

xit name

(. , •) yank buffer count

(.+1) z count

(•) z type count

2-16

Editors

chan.ged.

If an error occurs while writing the current
and edited file, the editor considers that there
has been: "No write since last change" even if
the buffer had not previously been modified.

[w> >] Writes the buffer contents at the end
of an existing file.

Overrides the checking of the normal write
command, and will write to any file which the
system permits.

Writes the specified lines into command.

Note: The space between wand ! is
important. It's the only difference
between wI, which overrides
checks and w !, which writes to a
command.

Similar to a write and then a quit com­
mand.

The variant overrides checking on the sensi­
bility of the write command, as w! does.

If any changes have been made and not writ­
ten, xit writes the buffer out, then quits.

[ya] Places the specified lines in the named
buffer, for later retrieval via put. If no buffer
name is specified, the lines go to a more vola­
tile place; see the put command description.

Print- the next count lines, default count =
window.

Prints a window of text with the specified line
at the top. If type is '-' the line is placed at
the bottom; a '.' causes the line to be placed
in the center. A count gives the number of
lines to be displayed rather than double the
n urn ber specified by the scroll option. On a
CRT, the screen is cleared before display
begins unless count < screen size. The
current line is left at the last line printed.

Note: Forms "z=" and "z"''' also exist;
"z=" places the current line in
the center, surrounds it with lines

ex

C
~

/' .. -"

o

o

o

o

SECTION 1

! command

(addr , addr) ! command

($) =

(. , .) > count flags

(. , .) < count flags

lZ

(.+1 , .+1)

ex

Editors

of "-" characters and leaves the
current line at this line. The form
"z"" prints the window before
"z-" would. The characters "+",
""", and "-" may be repeated for
cumulative effect.

The remainder of the line after the! charac­
ter is sent to a Shell to be executed. Within
the text of command, the characters "%" and
"#" are expanded as in filenames and the
character "!" is replaced with the text of the
previous command. Thus, in particular, "!I"
repeats the last such Shell escape. If any such
expansion is performed, the expanded line will
be echoed. The current line is unchanged by
this command. If there has been "[No write]"
of the buffer contents since the last change to
the editing buffer, then a diagnostic will be
printed before the command is executed as a
warning. A single "!" is printed when the
command completes.

Takes the specified address range and supplies
it as standard input to command; the output
of command replaces the input lines.

Prints the line number of the 'addressed line.
The current line is unchanged~

Does an intelligent shift of the specified lines.
« shifts left and > shifts right). The quan­
tity of shift is determined by the shiftwidth
option and the repetition of the specification
character. Only white space (blanks and
tabs) is shifted; no non-blank characters are
discarded in a left shift. The current line
becomes the last line which changed due to
the shifting.

An end-of-file from a terminal input scrolls
through the file. The scroll option specifies
the size of the scroll, normally a half screen of
text.

An address alone causes the addressed lines to
be printed. A blank line prints the next line
in the file.

2-17

SECTION 1 Editors

(. , .) & options count flags

Repeats the previous substitute command.

(• , •) - options count flags

Replaces the previous regular expression with
the previous replacement pattern from a sub­
stitution.

2.10 REGULAR EXPRESSIONS

2.10.1 Regular Expressions

A regular expression specifies a set of strings of characters. A member of
this set of strings is said to be matched by the regular expression. Ex
remem bers two previous regular expressions: the previous regular expres­
sion used in a substitute command and the previous regular expression
used elsewhere (referred to as the previous scanning regular expression.)
The previous regular expression can always be referred to by a null re,
e.g., "I I" or "??".

2.10.2 Magic and Nomagic

The regular expressions allowed by ex are constructed in one of two ways
depending on the setting of the magic option. The ex and vi default set­
ting of magic gives quick access to a powerful set of regular expression
metacharacters. The disadvantage of magic is that the user must
remember that these metacharacters are magic and precede them with
the character "\" to use them as "ordinary" characters. With nomagic,
the default for edit, regular expressions are much simpler, there being
only two metacharacters. The power of the other metacharacters is still
available by preceding the (now) ordinary character with a "\". Note
that "\" is thus always a metacharacter.

The remainder of the discussion of regular expressions assumes that the
setting of this option is magic.

Note: To discern what is true with nomagic it suffices to remember
that the only special characters in this case will be "i" at the
beginning of a regular expression, "$" at the end of a regular
expression, and "\". With nomagic the characters." - " and
"&" also lose their special meanings related to the replace­
ment pattern of a substitute.

2.10.3 Regular Expression Summary

The following basic constructs are used to construct magic mode regular
expressions.

char An ordinary character matches itself. The characters "i"
at the beginning of a line, "$" at the end of line, "*" as

2-18 ex

------_._. __ _-_ .. -_ .. - .-...

o

o

o

o

SECTION 1

i

$

\<

\>

[string]

Editors

any character other than the first, ".", "\", "[", and ,,~ "
are not ordinary characters and must be escaped (preceded)
by "\" to be treated as such.

At the beginning of a pattern forces the match to succeed
only at the beginning of a line.

At the end of a regular expression forces the match to
succeed only at the end of the line.

Matches any single character except the new-line character.

Forces the match to occur only at the beginning of a "vari­
able" or "word"; that is, either at the beginning of a line,
or just before a letter, digit, or underline and after a char­
acter not one of these.

Similar to "\ <", but matching the end of a "variable" or
"word", Le. either the end of the line or before character
which is neither a letter, nor a digit, nor the underline char­
acter.

Matches any (single) character in the class defined by
string. Most characters in string define themselves. A pair
of characters separated by "-" in string defines the set of
characters collating between the specified lower and upper
bounds, thus "[a-z]" as a regular expression matches any
(single) lower-case letter. If the first character of string is
an "i" then the construct matches those characters which
it otherwise would not; thus "[ia-z]" matches anything but
a lower-case letter (and of course a newline). To place any
of the characters "i", "[", or "-,, in string you must escape
them with a preceding "\".

2.10.4 Combining Regular Expression Primitives

The concatenation of two regular expressions matches the leftmost and
then longest string which can be divided with the first piece matching
the first regular expression and the second piece matching the second.
Any of the (single character matching) regular expressions mentioned
above may be followed by the character "*" to form a regular expression
which matches any number of adjacent occurrences (including 0) of char­
acters matched by the regular expression it follows.

The tilde (-) character may be used in a regular expression, and matches
the text which defined the replacement part of the last substitute com­
mand. A regular expression may be enclosed between the sequences "\("
and "\)" with side effects in the substitute replacement patterns.

2.10.5 Substitute Replacement Patterns

The basic metacharacters for the replacement pattern are "&" and ,,- ";
these are given as "\&" and "\ - " when nomagic is set. Each instance
of "&" is replaced by the characters which the regular expression

ex 2-19

SECTION 1 Editors

matched. The metacharacter ,,- " stands, in the replacement pattern,
for the defining text of the pre~ious replacement pattern.

Other metasequences possible in the replacement pattern are always
introduced by the escaping character "\". The sequence "\n" is replaced
by the text matched by the nth regular su bexpression enclosed between
"\ (" and "\)".

Note: When nested, parenthesized sub expressions are present, n is
determined by counting occurrences of "\(" starting from the
left.

The sequences "\ u" and "\1" cause the following character in, the
replacement to be converted to upper- or lower-case respectively if this
character is a letter. The sequences "\ U" and "\L" turn such conversion
on, either until "\E" or "\e" is encountered, or until the end of the
replacement pattern.

2.11 OPTION DESCRIPTIONS

In the following descriptions, the full name of the option (bold type) is
followed by the option's default- value. The abbreviation appears in
brackets. The brackets are not part of the abbreviation.

autoindent noai [ai] Can be used to ease the preparation of

2-20

structured program text. At the beginning of
each append, change, or insert command
or when a new line is opened or created by an
append, change, insert, or substitute
operation within open or visual mode, ex
looks at the line being appended after, the
first "line changed or the line inserted before
and calculates the amount of white space at
the start of the line. Then, it aligns the cur­
sor at the level of indentation so determined.

If you type lines of text, they will continue to
be justified at the displayed indenting level.
If more white space is typed at the beginning
of a line, the following line will start aligned
with the first non-white character of the pre­
vious line. To back the cursor up to the
preceding tab stop, hit tD. The tab stops
going backwards are defined at multiples of
the shiftwidth option. You cannot backspace
over the indent, except by sending an end-of­
file with a tZ.

A line with no characters added to it turns

ex

\
"'--_/

c

o

o

o

o

SECTION 1

autoprint ap

autowrite noaw

beautify nobeautify

directory dir= /tmp

Editors

into a completely blank line (the white space
provided for the autoindent is discarded.)
Lines beginning with an "i" and immediately
followed by a iD cause the input to be reposi­
tioned at the beginning of the line, but retain
the previous indent for the next line. Simi­
larly, a "0" followed by a iD repositions at
the beginning but without retaining the previ­
ous indent.

Autoindent doesn't happen in global com­
mands or when the input is not a terminal.

[ap] Causes the current line to be printed
after each delete, copy, join, move, substi­
tute, t, undo or shift command. This has
the same effect as supplying a trailing p to
each such command. Autoprint is
suppressed in globals, and only applies to the
last of many commands on a line.

[aw] Causes the contents of the buffer to be
written to the current file if you have
modified it and gives a next, rewind, stop,
tag, or! command, or a " ... i" (switch files)
or "A]" (tag goto) command in visual.

Note: The edit and ex commands do
not autowrite. In each case, there
is an equivalent way of switching
when autowrite is set to avoid the
autowrite.

[bf] Causes all control characters except tab,
newline, and form-feed to be discarded from
the input. A complaint is registered the first
time a backspace character is discarded.
Beautify does not apply to command input.

[dir] Specifies the directory in which ex places
its buffer file. If this directory in not writ­
able, then the editor will exit abruptly when
it is unable to create its buffer there.

edcompatible noedcompatible

ex

Oauses the presence or absence of g and c
suffixes on substitute commands to be remem­
bered, and to be toggled by repeating the
suffixes. The suffix r makes the substitution

2-21

SECTION 1

errorbells noed

hardtabs ht=8

ignorecase noic

lisp nolisp

list nolist

magic magic

mesg mesg

number nonumber

open open

2-22

Editors

be as in the - command, instead of like &.

reb] Error messages are preceded by a bell.

Note: Bell ringing in open and visual on
errors is not suppressed by setting
noeb.

If possible, the editor places the error message
in a standout mode of the terminal (such as
inverse video) instead of ringing the bell.

[ht] Gives the boundaries on which terminal
hardware tabs are set (or on which the system
expands tabs).

ric] All upper-case characters ~n the text are
mapped to lower-case in regular expression
matching. In addition, all upper case charac­
ters in regular expressions are mapped to
lower case except in character class
specifications.

Autoindent indents appropriately for LISP
code, and the () { } [[and]] commands in
open and visual are modified to have mean­
ing for LISP.

All printed lines are displayed showing tabs
and end-of-lines as in the list command.

If nomagic is set, the number of regular
expression metacharacters is greatly reduced,
with only""" and "$" having special effects.
In addition, the metacharacters ,,- " and "&"
of the replacement pattern are treated as nor­
mal characters. All the normal metacharac­
ters may be made magic when nomagic is
set by escaping them with a backslash ('\').

If nomesg is set, it inhibits other users from
doing a write to your terminal while you are
in visual mode.

[nu] Causes all output lines to be numbered.
In addition, each input line will be prompted
for its line number.

If noopen, the commands open and visual
are not permitted. This is set for edit to
prevent confusion resulting from accidental
entry to open or visual mode.

ex

~'

o

o

C)

o

SECTION 1

optimize optimize

Editors

[opt] Throughput of text is expedited by set­
ting the terminal to not do automatic carriage
returns when printing more than one (logical)
line of output, greatly speeding output on ter­
minals without addressable cursors when text
with leading white space is printed.

paragraphs para=IPLPPPQPP LIbp

prompt prompt

redraw noredraw

remap remap

report report=5

[para] Specifies the paragraphs for the { and
} operations in open and visual. The pairs
of characters in the option's value are the
names of the macros used to start paragraphs.

Command mode input is prompted for with a
"."

The editor simulates an intelligent terminal
on a dumb terminal (e.g. during insertions in
visual the characters to the right of the cur­
sor position are refreshed as each input char­
acter is typed.) Useful only at very high
speed.

If on, macros are repeatedly tried until they
are unchanged. For example, if 0 is mapped
to 0, and 0 is mapped to I, then if remap is
set, 0 will map to I, but if noremap is set, it
will map to O.

Specifies a threshold for feedback from com­
mands. Any command which modifies more
than the specified number of lines will provide
feedback as to the scope of its changes. For
commands such as global, open, undo, and
visual which have potentially more far reach­
ing scope, the net change in the number of
lines in the buffer is presented at the end of
the command, subject to this same threshold.
Thus, during a global operation, notification
on the individual commands performed is
suppressed.

scroll scroll=1/2 window Determines the number of logical lines
scrolled when an end-of-file is received from a
terminal input in command mode, and the
number of lines printed by a command mode
z command (double the value of scroll).

sections sections=SHNlllI HU

Specifies the section macros for the [[and]]

ex 2-23

SECTION 1 Editors
I

operations in open and visual. The pairs of
characters in the option's value are the names
of the macros which start paragraphs.

shell SHELL or sh=/bin/sh

shiftwidth sw=8

showmatch nosm

slowopen

tabstop ts=8

taglength tl=Q

tags

term

terse noterse

warn warn

2-24

[sh] Gives the path name of the Shell used
by the Shell escape! and by the shell com­
mand. The default is taken from the environ­
ment variable SHELL if present.

[sw] Gives the width of a software tab stop,
used in reverse tabbing with jD when using
autoindent to append text, and by the shift
commands.

open and visual mode, when a) or } is
typed, move the cursor to the matching (or {
for one second if this matching character is on
the screen. Extremely useful with LISP.

[slow] Affects the display algorithm used in
visual mode, holding off display updating
during input of new text to improve
throughput when the terminal in use is both
slow and unintelligent. See Chapter 3 of this
section, An Introduction to Display Editing
with vi for more details.

[ts] The editor expands tabs in the input file
to be on tabstop boundaries for the purposes
of display.

[tl] Tags are not significant beyond this
many characters. A value of zero (the
default) means that all characters are
significant.

A path of files to be used as tag files for the
tag command. A requested tag is searched
for in the specified files, sequentially. By
default, files. tags and / usr/ lib/ tags are
searched for.

The terminal type of the output device.
Defaults to environment variable TERM if
set.

Use shorter error diagnostics.

Warn if there has been "[No write since last
change]" before a "!" command escape.

ex

o

o

o

o

o

SECTION 1

window

wrapscan ws

wrapmargin wm=O

writeany nowa

2.12 LIMITATIONS

Editors

The number of lines in a text window in the
visual command. The default is 8 at slow
speeds (600 baud or less), 16 at medium speed
(1200 baud), and the full screen (minus one
line) at higher speeds.

Note: The "commands" w300, w1200,
and w9600 are not true options
but set window only if the speed
is slow (300), medium (1200), or
high (9600), respectively. They
are suitable for an EXINIT and
make it easy to change the
8/16/full screen rule.

[ws] Searches using the regular expressions in
addressing will wrap around past the end of
the file.

[wm] Defines a margin for automatic wrap­
over of text during input in open and visual
modes.

[wa] Inhibits the checks normally made
before write commands, allowing a write to
any file to which you have access.

Editor limits you are likely to encounter are:

• 1024 characters per line,

• 256 characters per global command list,

• 128 characters per file name,

• 128 characters in the previous inserted and deleted text in open or
visual,

• 100 characters in a Shell escape command,

• 63 characters in a string valued option,

• 30 characters in a tag name, and

• a limit of 250000 lines in the file is silently enforced.

The visual implementation limits the number of macros defined with
map to 32, and the total number of characters in macros to be less than
512.

ex 2-25

(
,r---,

"-...

o

o

o

o

o

.-.-.. -.-.. -----.---~~~~~~~~-

SECTION 1 Editors

Chapter 3: An Introduction to Display Editing With vi

3.1 INTRODUCTION

Vi (visual) is a display-oriented interactive text editor. On DOMAIN sys­
tems, the shell window in which you invoke vi becomes a VT100 Emula­
tor. The "screen" of this "terminal" acts as a window into the file that
you are editing. Changes that you make to the file are reflected in what
you see.

Vi lets you insert new text at any place in the file. Most of the com­
mands to vi move the cursor around in the file. There are commands to
move the cursor forward and backward in units of characters, words,
lines, sentences and paragraphs. A small set of operators, like d for
delete and c for change, combine with the motion commands to perform
operations such as "delete word" or "change paragraph." This regularity
and the mnemonic assignment of commands to keys makes the vi com­
mand set easy to remember and to use.

Vi works on a large number of display terminals, as well as on DOMAIN
nodes. While it is advantageous to have an intelligent terminal which
can locally insert and delete lines and characters from the display, vi also
works well on dumb terminals that communicate over slow phone lines.
The editor makes allowance for the low bandwidth in these situations
and uses smaller window sizes and different display updating algorithms
to make best use of the limited speed available.

It is also possible to use the vi command set and a one-line editing win­
dow on hardcopy terminals, storage tubes and "glass tty's." The full
command set of the more traditional, line-oriented editor ex is available
within vi; it is quite simple to switch between the two modes of editing.

This chapter is based on the original Introduction to vi, written at the
University of California at Berkeley.

3.2 GETTING STARTED

This chapter provides a quick introduction to vi. (Pronounced vee-eye.)
As you read this, run vi on a non-critical file with which you are fami­
liar. In the first part of this chapter, we describe the fundamentals of
using vi. Topics of less universal interest are presented in later sections.

This chapter includes a section that presents the special meanings that
various keyboard characters have for vi.

vi 3-1

SECTION 1 Editors

3.2.1 Notational Conventions

In the examples we present, input that must be typed "as-is" will be set
in bold type. Text which should be replaced with appropriate input
will be given in Italics. We will represent special characters and keyboard
keys in SMALL CAPITALS.

3.2.2 Vi and the VT100 Emulator Program

When run on a DOMAIN node, vi automatically invokes the / com/ vt100
terminal emulation program. This program performs two major func­
tions:

• It remaps the keyboard so that all VT100 function keys (including
ESC and RUB) are supported.

• It "borrows" the shell window and, using graphics primitives, mimics
the behavior of a VT132 terminal. (A VT132 is a VT100 with
insert / delete character and insert/delete line capabilities.)

• It allows vi to communicate with this "terminal" using normal escape
sequences. The termcap entry for an apollo_1 9l terminal is nearly the
same as the one for a vt132.

While a real VT132 can only display 24 lines of 80 columns, the emulator
will use as many lines and columns as will fit into the window in which it
was invoked. If you need to use vi, we recommend that you first invoke
a UNIX shell in a window of a convenient size, then dedicate that window
to running vi.

3.2.3 Keyboard Mapping

The table below shows how the keys on a DOMAIN keyboard map to the
keys of a VT100. This key mapping is only in effect when the cursor is
in a window running vi or the vt100 program.

Note:

3-2

Key definitions marked with a t are for the 880 (high-profile)
keyboard only.

vi

r '-.... '

C~

· -----_ .. _--- ---- -------------------- ---------------.---------------------------.. -----

o

o

o

o

o

SECTION 1 Editors

DOMAIN keyboard key I VT100 keypad
<ESC>
<INS MODE>t
<CHAR DEL>
<F2>
<F3>
<F4>
<F5>
<SHIFT/F2>
<SHIFT/F3>
< SHIFT/F4 >
<SHIFT/F5>
<CTRL/F2>
<CTRL/F3>
< CTRL/F4 >
<CTRL/F5>
<F6>
<F7>
SHIFT/<F6>
SHIFT/<F7>
CTRL/<F6>
CTRL/<F7>

3.2.4 Specifying Terminal Type

Note: If you only run vi on a DOMAIN node (if you never use a
dumb terminal), you may skip this section.

If you are using a terminal conencted to the DOMAIN system via
hardwired or phone lines, you must tell the system what kind of terminal
you are using before you invoke vi. Here is a partial list of terminal type
codes. If your terminal does not appear here, see your System Adminis­
trator.

vi 3-3

SECTION 1 Editors

Code Full name Type
2621 Hewlett-Packard 2621AjP
2645 Hewlett-Packard 264x
act4 Microterm ACT-N
act5 Microterm ACT-V
adm3a Lear Siegler ADM-3a
adm31 Lear Siegler ADM-31
cl00 Human Design Concept 100
dm1520 Datamedia 1520
dm2500 Datamedia 2500
dm3025 Datamedia 3025
fox Perkin-Elmer Fox
h1500 Hazeltine 1500
h19 Heathkit h19
il00 Infoton 100
mime Imitating a smart act4 Intelligent
tl061 Teleray 1061
vt52 Dec VT52

Suppose, for example, that you have a Hewlett-Packard HP2621A termi­
nal. The code used by the system for this terminal is "2621". To tell
the system that you· are using a 2621, use one of the following UNIX com­
mands. In the C-Shell, say:

% setenv TERM 2621

If you are using a Bourne shell, type the commands:

$ TERM=2621
$ export TERM

If you want to arrange to have the terminal type set automatically when
you log in, use the tset program. For example, if you dial in on a VT52 ,
terminal, but also use a DOMAIN node at work, a typicall line for your
. login file (if you use the C-Shell) would be

setenv TERM' tset - -d vt52'

or for your .profile file (if you use the Bourne Shell)

TERM=' tset - -d vt52'

Tset knows when you are using a node, and needs only to be told that
when you dial in, it will be talking to a VT52. Usually, tset is used to
change the erase and kill characters, too.

13.2.5 Editing a File

'After telling the system what kind of terminal you have, make a copy of
a familiar file - one that is not too long - and run vi on this file, giving
the command

% vi name

where name is the name of the copy file you just created. When you do
this, the window will clear and the text of your file will appear in it.

3-4 vi

-------------------------_._--. __ ._--_._- ... _--_._----_ •.. _-_._-_._----. __ ._._-----------

o

o

o

o

o

SECTION 1 Editors

Note: If you gave the system an incorrect terminal type code, then
the editor may make a mess out of your screen. This happens
when it sends control codes for one kind of terminal to some
other kind of terminal. If this happens, hit the keys :q (colon
and the q key) and then hit the RETURN key. This should get
you back to the shell. Another possibility (if you don't see
your file) is that you typed the wrong file name and vi has
printed an error diagnostic. In this case, you should follow
the above procedure for getting back to the Shell, then re-try
the procedure. If the vi doesn't seem to respond to the com­
mands which you type here, try sending an interrupt to it by
typing tI, and then hitting the :q command again followed by
a carriage return.

3.2.6 The Buffer

The editor does not directly modify the file which you are editing.
Rather, the editor makes a copy of this file, in a place called the buffer,
and remembers the file's name. You do not affect the contents of the file
unless and until you write the changes you make back into the original
file.

3.2.7 View

If you want to use the editor to look at a file, rather than to make
changes in it, invoke it as view instead of vi. This will set the readonly
option which will prevent you from accidentally overwriting the file.

3.2.8 Arrow Keys

Vi supports the cursor positioning keys of most terminals. Whether or
not you have cursor positioning keys, you can use the h, j, k, and I keys
as cursor positioning keys.

Note: If you are using an HP2621 terminal, the function keys must
be shifted to be read by vi, otherwise, they only act locally.
Unshifted use will leave the cursor positioned incorrectly.

The h key command moves the cursor to the left (like th - the back­
space), j moves down (in the same column), k moves up (in the same
column), and I moves to the right.

3.2.9 Special Characters: ESC, RETURN and DEL

Look on your keyboard for a key labelled ESC or (if you're using a termi­
nal) ALT. On DOMAIN low-profile keyboards, ESC is near the upper left
corner of the character key area. On DOMAIN 880 keyboards, ESC is
mapped to INS MODE when vi is running. Try hitting this key a few
times. The editor will beep to indicate that it is in a quiescent state.

Note:

vi

On some terminals, vi will quietly flash the screen rather than
ringing the bell.

3-5

SECTION 1 Editors

Partially formed commands are cancelled by ESC, and when you insert
text in the file, you end the text insertion with ESC. This key is a fairly
harmless one to hit, so you can just hit it if you don't know what is
going on until the editor rings the bell.

The RETURN key is important because it is used to terminate certain
commands. On all DOMAIN keyboards (as well as on most terminals),
RETURN is located at the right side of the keyboard, and is the same key
used to terminate shell commands.

Another very useful key is the DEL or RUB key, which generates an inter­
rupt, telling the editor to stop what it is doing.

Note: On DOMAIN nodes, the interrupt function is mapped to tI by
the 'Unix_keys key definition file.

It is a forceful way of making the editor listen to you, or to return it to
the quiescent state if you don't know or don't like what is going on. Try
hitting the "I" key on your terminal. This key is used when you want
to specify a string to be searched for. The cursor should now be posi­
tioned after a "I" prompt at the bottom line of the window. You can
get the cursor back to the current position by hitting the DEL or RUB
key; try this now.

Note: Backspacing over the" I" will also cancel the search.

From now on we will simply refer to hitting the I (or DEL or RUB) key as
"sending an interrupt."

The editor often echoes your commands on the bottom line of the win­
dow. If the cursor is on the first position of this last line, then the editor
is performing a computation, such as computing a new position in the file
after a search or running a command to reformat part of the buffer.
When this is happening, you can stop the editor by sending an interrupt.

3.2.10 Getting Out of the Editor

Mter you have worked with this introduction for awhile, and you wish
to do something else, you can give the command ZZ to the editor. This
will write the contents of the editor's buffer back into the file you are
editing (if you made any changes), then quit vi. You can also end an
editor session by giving the command :q!RETURN.

Note: All commands which read from the last display line can also
be terminated with an ESC as well as a RETURN.

The :q! command ends the editor session and discards all the changes
you've made since your last write (Le., :w). You may need to use this
command if, for example, you change the editor's copy of a file you
wished only to view. Don't give this command when you really want to

3-6 vi

c

--- ------ --"'------------ ------------------ --- - - ------------------,---- ------ ------ ----- ---,- --- - ----------- ---

o

o

o

o

o

SECTION 1 Editors

save the changes you have made.

3.3 MOVING AROUND IN THE FILE

3.3.1 Scrolling and Paging

The most useful of the many scroll/page commands is generated by hit­
ting the CTRL (Control) and D keys at the same time, a control-D or
"tD'. From now on, we will use this two-character notation when refer­
ring to control sequences. You may have a key labelled """ on your ter­
minal. This key will be represented as """ in this book. The" t" nota­
tion will be used only as part of the "tx" notation for control characters.

As you know now if you tried hitting tD, this command scrolls down in
the file. The D thus stands .for down. For instance the command to
scroll up is tU. Many dumb terminals can't scroll up at all, in which
case hitting tu clears the screen and refreshes it with a line which is
farther back in the file at the top.

If you want to see more of the file below where you are, you can hit iE
to expose one more line at the bottom of the screen, leaving the cursor
where it is. The command tY (which is hopelessly non-mnemonic, but
next to tu on the keyboard) exposes one more line at the top of the
screen.

There are other ways to move around in the file; the keys tF and tB
move forward and backward a page, keeping a couple of lines of con­
tinuity between screens so that it is possible to read through a file using
these rather than tD and tV if you wish.

Notice the difference between scrolling and paging. If you are trying to
read the text in a file, hitting iF to move forward a page does not allow
you to view lines that were on the previous page. Scrolling, on the other
hand, leaves previous lines visible. You can continue to read the text as
scrolling is taking place.

3.3.2 Searching, Goto, and Previous Context

Another way to position the cursor in the file is by giving the editor a
string to search for. Type the character / followed by a string of charac­
ters terminated by RETURN. The editor will position the cursor at the
next occurrence of this string. Try hitting n to then go to the next
occurrence of this string. The character ? will make vi search backwards
from where you are; and is otherwise like /.

Note:

vi

These searches will normally wrap around the end of the file,
and thus find the string even if it is not on a line in the direc­
tion of your search, provided it is somewhere in the file. You
can disable this wraparound in scans by giving the command
:se nowrapscanRETURN, or its abbreviation :se nowsRE­
TURN.

3-7

SECTION 1 Editors

If the search string you give the editor is not present in the file, the edi­
tor will print a message in the last line of the window, and the cursor will
be returned to its initial position.

If you wish the search to match only at the beginning of a line, begin the
search string with a ". To match only at the end of a line, end the
search string with a $. Thus /" searchRETURN will search for the word
"search" at the beginning of a line, and /last$RETURN searches for the
word "last" at the end of a line.

Note: Vi can search for a string that is a regular expression in the
sense of the editors ex(l) and ed(l). If you don't wish to
learn about this yet, you can disable this more general facility
by doing :se nomagicRETURN; by putting this command in
EXINIT in your environment, you can have this always be in
effect (more about EXINIT later.)

The command G, when preceded by a number will position the cursor at
that line in the file. Thus 1 G will move the cursor to the first line of the
file. If you give G no count, then it moves to the end of the file.

If, because you are near the end of the file, there are unused lines on the
screen, the editor will place only the character ,,- " on those lines that
are past the end of the file.

You can find out the state of the file you are editing by typing a jG.
The editor will show you the name of the file you are editing, the number
of the current line, the number of lines in the buffer, and how far (in per­
centage of characters) you have moved through the buffer. Try doing
this now, and remember the number of the line you are on. Give a G
command to get to the end and then another G command to get back
w here you were.

You can also get back to a previous position by using the command "
(two back quotes). This is often more convenient than G because it
requires no advance preparation. Try giving a G or a search with / or ?
and then a " to get back to 'where you were. If you accidentally hit n
or any command which moves you far away from a context of interest,
you can quickly get back by hitting , , .

3.3.3 Moving Around on the Screen

Now try just moving the cursor around on the screen. If your terminal
has arrow keys, try them and convince yourself that they work. If you
don't have working arrow keys, you can always use h, j, k, and l.
Experienced users of vi prefer using these keys since, unlike arrow keys,
they don't require you to move your hand away from the character keys
on the keyboard.

Hit the + key. Each time you do, notice that the cursor advances to the
next line in the file, at the first nonblank position on the line. The - key
is like + but goes the other way.

3-8 vi

c'

'''--..

C
'"

-'

o

o

o

o

SECTION 1 Editors

These are very common keys for moving up and down lines in the file.
Notice that if you go off the bottom or top with these keys, then the
screen will scroll as necessary to bring a line at a time into view. The
RETURN key has the same effect as the + key.

Vi also has commands to take you to the top, middle and bottom of the
screen. H will take you to the top (home) line on the screen. Try
preceding it with a number as in 3H. This will take you to the third line
on the screen. Many vi commands take these preceding numbers, also
called counts. Try M, which takes you to the middle line on the screen,
and L, which takes you to the last line on the screen. L also takes a
count, thus 5L will take you to the fifth line from the bottom.

3.3.4 Moving Within a Line

Now try picking a word on some line on the screen (not the first word on
the line). Using RETURN and -, move the cursor to the line the word is
in. Hit the w key. This advances the cursor to the next word on the
line. Now hit the b key to back up, by words, in the line. Also try the e
key which advances you to the end of the current word rather than to
the beginning of the next word. Also try SPACE (the space bar) which
moves right one character and the BS (backspace or jH) key which moves
left one character. The key h works as jH does and is useful if you
don't have a BS key. (Also, as noted just above, I will move to the right.)

If the line had any punctuation, you may have noticed that the wand b
keys stopped at each group of punctuation. You can also go backwards
and forwards words without stopping at punctuation by using Wand B
rather than the lower case equivalents. Think of these as bigger words.
Try these on a few lines with punctuation to see how they differ from the
lower case wand b.

These "word" movement keys wrap around the end of line, rather than
stopping at the end. Try moving to a word on a line below where you
are by repeatedly hitting w.

vi 3-9

SECTION 1 Editors

3.3.5 Summary of Cursor Movement and Scrolling

SPACE

tB
tD
tE
tF
tG
tH
tN
tP
tU
tY
+
/
?
B
G
H
M
L
W
b

advance the cursor one position
backwards to previous page
scrolls down in the file
exposes another line at the bottom
forward to next page
tell what is going on
backspace the cursor
next line, same column
previous line, same column
scrolls up in the file
exposes another line at the top
next line, at the beginning
previous line, at the beginning
scan for a following string forwards
scan backwards
back a word, ignoring punctuation
go to specified line, last default
home screen line
middle screen line
last screen line
forward a word, ignoring punctuation
back a word

e end of current word
n scan for next instance of / or ? pattern
w word after this word

3.4 MAKING SIMPLE CHANGES

3.4.1 Inserting

One of the most useful commands is the i (insert) command. Mter you
type i, everything you type until you hit ESC is inserted into the file.
Try this now; position yourself to some word in the file and try inserting
text before this word. If you' are using a dumb terminal, it will seem, for
a minute, that some of the characters in your line have been overwritten,
but they will reappear when you hit ESC.

Now find a singular noun that can be made plural by the addition of a
final "s" Position the curso at this word and type e (move to end of
word), then a for append and then "sEse" to terminate the textual
insert.

Try inserting and appeBding a few times to make sure you understand
how this works; i placing text to the left of the cursor, a to the right.

It is often the case that you want to add new lines to the file you are
editing, before or after some specific line in the file. Find a line where
this makes sense and then give the command 0 to create a new line after
the line you are on, or the command 0 to create a new line before the
line you are on. Mter you create a new line in this way, all text you
type up to an ESC is inserted on the new line.

3-10 vi

\

'- .--

C)

o

o

o

o

SECTION 1 Editors

Many related editor commands are invoked by the same letter key and
differ only in that one is given by a lower case key and the other is given
by an upper case key. Where this is true, the upper case key often
differs from the lower case key in its sense of direction, with the upper
case key working backward and/or up, while the lower case key moves
forward and/or down.

If you need to type in more than one line of text, hit a RETURN at the
end of any line you are typing. A new line will be created for text, and
you can continue to type. On some terminals, vi editor may choose to
wait before redrawing the lower portion of the screen. This will make it
appear as though you are typing over existing screen lines, but it avoids
the lengthy delay which would occur if the editor attempted to keep the
tail of the screen always up to date. The tail of the screen will be fixed
up, and the "overwritten" lines will reappear, when you hit ESC.

While you are inserting new text, you can use the characters you nor­
mally use at the system command level (usually iH or #) to backspace
over the last character which you typed, and the character which you use
to kill input lines (usually @, iX, or iU) to erase the input you have
typed on the current line.

Note: The character iH (backspace) always works to erase the last
input character here, regardless of what your erase character
is.

The character iW will erase a whole word and leave the cursor after the
space following the previous word; it is useful for quickly backing up in
an insert.

Notice that when you backspace during an insertion, the characters you
backspace over are not erased; the cursor moves backwards, and the
characters remain on the display. This may be useful if you are planning
to type in something similar to what's already there. In any case, the
characters disappear when when you hit ESC; if you want to get rid of
them immediately, hit an ESC and then a again.

Notice, also, that you can't erase characters which you didn't insert, and
that you can't backspace around the end of a line. If you need to back
up to the previous line to make a correction, just hit ESC and move the
cursor back to the previous line. After making the correction, you can
return to where you were and use the insert or append command again.

3.4.2 Making Small Corrections

To make small corrections in existing text, use the arrow keys, word­
length motion commands, backspace (the BACK SPACE key, iH, or even
just h), or SPACE bar to move the cursor to the incorrect character. If
the character is not needed then hit the x key; this deletes the character
from the file. It is analogous to the way you x out characters when you
make mistakes on a typewriter.

vi 3-11

SECTION 1 Editors

If the character is incorrect, you can replace it with the correct character
by giving the command rc, where c is replaced by the correct character.
Finally, if the character which is incorrect should be replaced by more
than one character, use the s command. This substitutes a string of
characters, ending with ESC, for the character under the cursor. If there
are a small number of characters that are wrong, precede s with a count
of the number of characters to be replaced. Counts are also useful with
x to specify the number of characters to be deleted.

3.4.3 More Corrections: Operators

You already know almost enough to make changes at a higher level. All
you need to know now is that the d key acts as a delete operator. Try
the command dw to delete a word. Try hitting. (dot) a few times.
Notice that this repeats the effect of the dw. The command"." repeats
the last command which made a change.

Now try db. This deletes a word backwards (it deletes the preceding
word). Try dSPACE. This deletes a single character, and is equivalent to
the x command.

Another very useful operator is c or change. The command cw thus
changes the text of a single word. You follow it by the replacement text
ending with an ESC. Find 'a word which you can change to another, and
try this now. Notice that the end of the text to be changed was marked
with the character "$" so that you can see this as you are typing in the
new material. '

3.4.4 Operating on Lines

It is often the case that you want to operate on entire lines. Find a line
which you want to delete, and type dd, the d operator twice. This will
delete the line. If you are on a dumb terminal, the editor may just erase
the line on the screen, replacing it with a line with only an @ on it. This
line does not correspond to any line in your file, but only acts as a place
holder. It helps to avoid a lengthy redraw of the rest of the screen which
would be necessary to close up the hole created by the deletion on a ter­
minal without a delete line capability.

Try repeating the c operator twice; this will change a whole line, erasing
its previous contents and replacing them with text you type up to an
ESC.

Note: The command S is a convenient synonym for cc, by analogy
with s. Think of S as a substitute on lines, while s is a sub­
stitute on characters.

You can delete or change more than one line by preceding the dd or cc
with a count, i.e. 5dd deletes 5 lines. You can also give a command like
dL to delete all the lines up to and including the last line on the screen,
or d3L to delete through the third line from the bottom.

3-12 vi

C~

o

o

o

CI

o

SECTION 1 Editors

Note: Using the / search after a d will normally delete characters
from the current position to the point of the match. If you
want to delete whole lines including the two points, give the
pattern as /pat/ +0, a line address.

Notice that the editor lets you know when you change a large number of
lines so that you can see the extent of the change. The editor will also
always tell you when a change you make affects text which you cannot
see.

3.4.5 Undo

Now suppose that the last change which you made was incorrect; you
could use the insert, delete and append commands to put the correct
material back. However, since it is often the case that we regret a change
or make a change incorrectly, the editor provides a u (undo) command to
reverse the last change which you made. Try this a few times, and give
it twice in a row to notice that an u also undoes a u.

The undo command lets you reverse only a single change. Mter you
make a number of changes to a line, you may decide that you would
rather have the original state of the line back. The U command restores
the current line to the state before you started changing it.

You can recover text which you delete, even if undo will not bring it
back; see the section on recovering lost text below.

3.4.6 Summary of Insert /Delete Functions

SPACE

tH
tW
erase
kill

0
U
a
e
d

0

u

advance the cursor one position
backspace the cursor
erase a word during an insert
your erase (usually tH or #), erases a character during an insert
your kill (usually @, tX, or tV), kills the insert on this line
repeats the changing command
opens and inputs new lines, above the current
undoes the changes you made to the current line
appends text after the cursor
changes the object you specify to the following text
deletes the object you specify
inserts text before the cursor
opens and inputs new lines, below the current
undoes the last change

3.5 MOVING, REARRANGING, AND DUPLICATING TEXT

3.5.1 Low Level Character Motions

Move the cursor to a line that includes a parenthesis, comma, or period.
Try the command fx where x is this character. This command finds the
next x character to the right of the cursor in the current line. Try then
hitting a ;, which finds the next instance of the same character. By using
the f command and then a sequence of ;'s you can often get to a

vi 3-13

SECTION 1 Editors

particular place in a line much faster than with a sequence of word
motions or SPACEs. There is also a F command, which is like f, but
searches backward. The; command repeats F also.

When you are operating on the text in a line, it is often desirable to deal
with the characters up to, but not including, the first instance of a char­
acter. Try dfx for some x now and notice that the x character is deleted.
Undo this with u and then try dtx; the t here stands for to, i.e., delete
up to the next x, but not the x. The command T is the reverse of t.

When working with the text of a single line, an t moves the cursor to the
first non-white position on the line, and a $ moves it to the end of the
line. Thus $a will append new text at the end of the current line.

Your file may have tab (tl) characters in it. These characters are
represented as a number of spaces expanding to a tab stop, where tab
stops are every 8 positions.

Note: This is settable by a command of the form :se ts=x, where x
is 4 to set tabstops every four columns. This has effect on the
screen representation within the editor.

When the cursor is at a tab, it sits on the last of the several spaces which
represent that tab. Try moving the cursor back and forth over tabs so
you understand how this works.

On rare occasions, your file may include nonprinting characters. These
characters are displayed in the same way they are represented in this
document, that is with a two character code, the first character of which
is "1'. On the screen, non-printing characters resemble one "t" charac­
ter adjacent to another, but spacing or backspacing over the character
will reveal that the two characters are, like the spaces representing a tab
character, a single character.

The editor sometimes discards control characters, depending on the char­
acter and the setting of the beautify option, if you attempt to insert
them in your file. You can get a control character in the file by begin­
ning an insert and then typing a tv before the control character. The
tv quotes the following character, causing it to be inserted directly into
the file.

3.5.2 Higher-Level Text Objects

In editing a document, it is often advantageous to work in terms of sen­
tences, paragraphs, and sections. The operations (and) move to the
beginning of the previous and next sentences, respectively. Thus the
command d) will delete the rest of the current sentence; likewise d(will
delete the previous sentence if you are at the beginning of the current
sentence, or the current sentence up to where you are if you are not at
the beginning of the current sentence.

3-14 vi

i~
I
\ ' _ .. /

(~

o

o

o

o

SECTION 1 Editors

A sentence is defined to end at a ".', "!" or '?" which is followed by
either the end of a line, or by two spaces. Any number of closing ")', "1',
""" and ",,, characters may appear after the ".', "!" or "?" before the
spaces or end of line.

The operations { and } move over paragraphs and the operations [[and
]] move over sections.

Note: The [[and]] operations require the operation character to be
doubled because they can move the cursor far from where it
currently is. While it is easy to get back with the command
, , , these commands would still be frustrating if they were
easy to hit accidentally.

A paragraph begins after each empty line, and also at each of a set of
paragraph macros, specified by the pairs of characters in the definition of
the string valued option paragraphs. The default setting for this
option defines the paragraph macros of the -ms and -mm macro pack­
ages, i.e. the" .IP", ".LP", ".PP" and" .QP", ".P" and" .LI" macros.

Note: You can easily change or extend this set of macros by assign­
ing a different string to the paragraphs option in your
EXINIT. The ".bp" troff request is also assumed to indicate
the start of a paragraph.

Each paragraph boundary is also a sentence boundary. The sentence and
paragraph commands, if given counts, can operate over groups of sen­
tences and paragraphs.

Sections in the editor begin after each macro in the sections option, nor­
mally ".NH', '.SH', ".R" and" .HU', and each line with a formfeed jL in
the first column. Section boundaries are always line and paragraph
boundaries also.

Try experimenting with the sentence and paragraph commands until you
are sure how they work. If you have a large document, try looking
through it using the section commands. The section commands interpret
a preceding count as a different window size in which to redraw the
screen at the new location, and this window size is the base size for
newly drawn windows until another size is specified. This is very useful
if you are on a slow terminal and are looking for a particular section.
You can give the first section command a small count to then see each
successive section heading in a small window.

3.5.3 Rearranging and Duplicating Text

The editor has a single unnamed buffer where the last deleted or changed
text is saved, and a set of named buffers a-z which you can use to save
copies of text and to move text around in your file and between files.

vi 3-15

SECTION 1 Editors

The operator y yanks a copy of the object which follows into the
unnamed buffer. If preceded by a buffer name, "x y, where x here is
replaced by a letter a-z, it places the text in the named buffer. The text
can then be put back in the file with the commands p and P; p puts the
text after or below the cursor, while P puts the text before or above the
cursor.

If the text that you yank forms a part of a line or is an object (e.g., a
sentence) which partially spans more than one line, the object will be
placed after the cursor by p and before it if you use P. If the yanked
text forms whole lines, they will be put back as whole lines, without
changing the current line. In this case, the put acts much like a 0 or 0
command.

Try the command YP. This makes a copy of the current line and leaves
you on this copy, which is placed before the current line. The command
Y is a convenient abbreviation for yy. The command Yp will also make
a copy of the current line, and place it after the current line. You can
give Y a count of lines to yank, and thus duplicate several lines; try
3YP.

To move text within the buffer, you need to delete it in one place and
put it back in another. You can precede a delete operation by the name
of a buffer in which the text is to be stored as in "a5dd deleting 5 lines
into the named buffer a. You can then move the cursor to the eventual
resting place of the these lines and do a "ap or "aP to put them back.
In fact, you can switch and edit another file before you put the lines
back, by giving a command of the form :enameRETURN where name is
the name of the other file you want to edit. You will have to write back
the contents of the current editor buffer (or discard them) if you have
made changes before the editor will let you switch to the other file. An
ordinary delete command saves the text in the unnamed buffer, so that
an ordinary put can move it elsewhere. However, the unnamed buffer is
lost when you change files, so to move text from one file to another you
should use an unnamed buffer.

3-16 vi

o

o

o

o

SECTION 1 Editors

3.5.4 Summary of Higher-Level Motions and Objects

t first non-white on line
$ end of line
) forward sentence
} forward paragraph
]] forward section
(backward sentence
{ backward paragraph
[[backward section
Ix find x forward in line
p put text back, after cursor or below current line
y yank operator, for copies and moves
tx up to x forward, for operators
Fx f backward in line
P put text back, before cursor or above current line
Tx t backward in line

3.6 HIGH LEVEL COMMANDS

3.6.1 Writing, Quitt-ing, Editing New Files

So far we have seen how to enter vi and to write out our file using either
ZZ or :wRETURN. The first exits from the editor, (writing if changes
were made), the second writes and stays in the editor.

If you have changed the editor's copy of the file but haven't written the
changes with :w, and you don't wish to save the changes, perhaps
because you made some major mistakes while editing, or because you
decided that the changes did not improve the file, then you can give the
command :q!RETURN to quit from the editor without writing the
changes. You can also re-edit the same file (starting over) by giving the
command :e!RETURN. Use these commands carefully. It is not possible
to recover the changes you have made after you discard them in this
manner. As above, re-editing a file with :e! only discards changes made
since the last :w command you gave in that file.

You can edit a different file without leaving vi by giving the command
:enameRETURN. If you have not written out your file before you try to
do this, then the editor will tell you this, and delay editing the other file.
You can then give the command :wRETURN to save your work and then
the:e nameRETURN command again, or carefully give the command
:e!nameRETURN, which edits the other file discarding the changes you
have made to the current file. To have the editor automatically save
changes, include set autowrite in your EXINIT file, and use :n instead of
:e.

3.6.2 Escaping to a Shell

You can get to a shell to execute a single command by giving a vi com­
mand of the form :! cmdRETURN. The system will run the single com­
mand cmd and when the command finishes, the editor will ask you to hit
a RETURN to continue. When you have finished looking at the output on
the screen, you should hit RETURN and the editor will clear the screen

vi 3-17

SECTION 1 Editors

and redraw it. You can then continue editing. You can also give
another: command when it asks you for a RETURN; in this case, the
screen will not be redrawn.

If you wish to execute more than one command in the shell, then you can
give the command :shRETURN to get a new shell. When you finish with
the shell, ending it by typing a iD, vi will clear the screen and continue.

Note: You can not invoke csh, the C shell, in this way.

On systems which support it, iZ will suspend the editor and return to
the (top level) shell. When the editor is resumed, the screen will be
redrawn.

3.6.3 Marking and Returning

The command " returns to the previous place after a motion of the cur­
sor by a command such as /, ? or G. You can also mark lines in the file
with single letter tags and return to these marks later by naming the
tags. Try marking the current line with the command mx, where you
should pick some letter for x, say "a'. Then move the cursor to a
different line (any way you like) and hit 'a. The cursor will return to
the place which you marked. Marks last only until you edit another file.

When using operators such as d and referring to marked lines, it is often
desirable to delete whole lines rather than deleting to the exact position
in the line marked by m. In this case, you can use the form ' x rather
than' x. Used without an operator, ' x will move to the first non-white
character of the marked line; similarly' , moves to the first non-white
character of the line containing the previous context mark ' , .

3.6.4 Adjusting the Screen

If the screen image is messed up because of a transmission error to your
terminal, or because some program other than the editor wrote output to
your terminal, you can hit a iL, the ASCII form-feed character, to refresh
the screen.

On a dumb terminal, if there are @ lines in the middle of the screen as a
result of line deletion, you may get rid of them by typing iRe This
causes the editor to retype the screen, closing up these holes.

Finally, if you wish to place a certain line on the screen at the top, mid­
dle, or bottom of the screen, you can position the cursor to that line, and
then give a z command. You should follow the z command with a
RETURN if you want the line to appear at the top of the window, a • if
you want it at the center, or a - if you want it at the bottom.

3.7 ADVANCED TOPICS

3-18 vi

CI

\.

c

u

o

(J

o

o

SECTION 1 Editors

3.7.1 Editing on Slow Terminals

When you are on a slow terminal, it is important to limit the amount of
output which is generated to your screen so that you will not suffer long
delays, waiting for the screen to be refreshed. We have already pointed
out how the editor optimizes the updating of the screen during insertions
on dumb terminals to limit the delays, and how the editor erases lines to
@ when they are deleted on dumb terminals.

The use of the slow terminal insertion mode is controlled by the slowopen
option. You can force the editor to use this mode even on faster termi­
nals by giving the command :se slowRETURN. If your system is sluggish
this throttles the amount of output coming to your terminal. You can
disable this option by :se noslowRETURN.

The editor can simulate an intelligent terminal on a dumb one. Try giv­
ing the command :se redrawRETURN. This simulation generates a great
deal of output and is generally tolerable only on lightly loaded systems
and fast terminals. You can disable this by giving the command :se
noredrawRETURN.

The editor also makes editing more pleasant at low speed by starting'
editing in a small window, and letting the window expand as you edit.
This works particularly well on intelligent terminals. The editor can
expand the window easily when you insert in the middle of the screen on
these terminals. If possible, try the editor on an intelligent terminal to
see how this works.

You can control the size of the window which is redrawn each time the
screen is cleared by giving window sizes as argument to the commands
which cause large screen motions:

:/?[[]]' ,

Thus, if you are searching for a particular instance of a common string in
a file, you can precede the first search command by a small 'number, say
3, and the editor will draw three line windows around each instance of
the string which it locates.

You can easily expand or contract the window, placing the current line
as you choose, by giving a number on a z command, after the z and
before the following RETURN, • or -. Thus the command z5. redraws the
screen with the current line in the center of a five line window.

Note: The command 5z. has an entirely different effect, placing line
5 in the center of a new window.

If the editor is redrawing or otherwise updating large portions of the
display, you can interrupt this updating by hitting a jl. If you do this
you may partially confuse the editor about what is displayed on the
screen. You can still edit the text on the screen if you wish; clear up the
confusion by hitting a jL; or move or search again, ignoring the current

vi 3-19

SECTION 1 Editors

state of the display.

3.7.2 Options, Set, and Editor Startup Files

The editor has a set of options, some of which have been mentioned
above. The most useful options are" given in the following table.

Name Default Description
autoindent noai Supply indentation automatically
autowrite noaw Automatic write before :n, :ta, ii, !
ignorecase nOlC Ignore case in searching
lisp nolisp ({) } commands deal with S-expressions
list nolist Tabs print as il; end of lines marked with $
magic nomagic The characters . [and * are special in scans
number nonu Lines are displayed prefixed with line numbers
paragraphs para=IPLPPPQPbpP LI Macro names which start paragraphs
redraw nore Simulate a smart terminal on a dumb one
sections sect=NHSHH HU Macro names which start new sections
shiftwidth sw=8 Shift distance for <, > and input iD and iT
showmatch nosm Show matching (or { as) or } is typed
slowopen slow Postpone display updates during inserts
term dumb The kind of terminal you are using

The options are of three kinds: numeric options, string options, and tog­
gle options. You can set numeric and string options by a statement of
the form

set opt=val

and toggle options can be set or unset by statements of one of the forms

set opt
set noopt

These statements can be placed in your EXINIT in your environment, or
given while you are running vi by preceding them with a : and following
them with a RETURN.

You can get a list of all options which you have changed by the com­
mand :setRETURN, or the value of a single option by the command :set
opt?RETVRN where opt is the option. A list of all possible options and
their values is generated by :set allRETURN. Set can be abbreviated see
Multiple options can be placed on one line, e.g. :se ai aw nuRETVRN.

Options set by the set command only last while you stay in the editor.
It is common to want to have certain options set whenever you use the
editor. This can be accomplished by creating a list of ex commands that
are to be run every time you start up ex, edit, or vi.

Note: All commands which start with: are ex commands.

A typical list includes a set command, and possibly a few map com­
mands. Since it is advisable to get these commands on one line, they can
be separated with the I character, for example:

3-20 vi

(-~

'----

o

o

o

o

o

SECTION 1 Editors

set ai aw terselmap @ ddlmap # x

which sets the options autoindent, autowrite, terse, (the set com­
mand), makes @ delete a line, (the first map), and makes # delete a
character, (the second .B map). This string should be placed in the vari­
able EXINIT in your environment. If you use the C-Shell, put this line
in the file . login in your home directory:

setenv EXINIT ' set ai aw terselmap @ ddlmap # x'

If you use the Bourne Shell, put these lines in the file .profile in your
home directory:

EXINIT=' set ai aw terselmap @ ddlmap # x'
export EXINIT

Of course, the particulars of the line would depend on which options you
wanted to set.

3.7.3 Recovering Lost Lines

Vi saves the last 9 deleted blocks of text in a set of registers numbered
1-9. You can get the n'th previous deleted text back in your file by the
command "n p. The" here says that a buffer name is to follow, n is the
number of the buffer you wish to try (use the number 1 for now), and p
is the put command, which puts text in the buffer after the cursor. If
this doesn't bring back the text you wanted, hit u to undo this and then
• (dot) to repeat the put command. In general the • command will repeat
the last change you made. As a special case, when the last command
refers to a numbered text buffer, the. command increments the number
of the buffer before repeating the command. Thus a sequence of the
form

"lpu.u.u.

will, if repeated long enough, show you all the deleted text which has
been saved for you. You can omit the u commands here to gather up all
this text in the buffer, or stop after any • command to keep just the
recovered text. You may use the command P (instead of p) to put the
recovered text before rather than after the cursor.

3.7.4 Recovering Lost Files

If the system crashes, you can recover the work you were doing to within
a few changes. You will normally receive mail when you next log in giv­
ing you the name of the file which has been saved for you. You should
then change to the directory where you were when the system crashed
and give a command of the form:

% vi -r name

replacing name with the name of the file which you were editing. This
will recover your work to a point near where you left off.

vi 3-21

SECTION 1 Editors

Note: In rare cases, some of the lines of the file may be lost. The
editor will give you the numbers of these lines and the text of
the lines will be replaced by the string "LOST'. These lines
will almost always be among the last few which you changed.
You can either choose to discard the changes which you made
(if they are easy to remake) or to replace the few lost lines by
hand.

You can get a listing of the files which are saved for you by giving the
command:

% vi-r

If there is more than one instance of a particular file saved, the editor
gives you the newest instance each time you recover it. In this way, you
can get an older saved copy back by first recovering the newer copies.

For this feature to work, vi must be correctly installed by your System
Administrator, and the mail program must exist to receive mail. The
invocation "vi -r" will not always list all saved files, but they can be
recovered even if they are not listed.

3.7.5 Continuous Text Input

When you are typing in large amounts of text it is convenient to have
lines broken near the right margin automatically. You can cause this to
happen by giving the command :se wm=10RETURN. This causes all
lines to be broken at a space at least 10 columns from the right hand
edge of the screen.

If the editor breaks an input line and you wish to put it back together
you can tell it to join the lines with J. You can give J a count of the
number of lines to be joined as in 3J to join 3 lines. The editor supplies
white space, if appropriate, at the juncture of the joined lines, and leaves
the cursor at this white space. You can kill the white space with x if you
don't want it.

3.7.6 Features for Program Editing

Vi has anum ber of commands for editing programs. The thing that
most distinguishes editing of programs from editing of text is the desira­
bility of maintaining an indented structure to the body of the program.
The editor has an autoindent facility for helping you generate correctly
indented programs.

To enable this facility you can give the command :se aiRETURN. Now
try opening a new line with 0 and type some characters on the line after
a few tabs. If you start another line, notice that the editor supplies
white space at the beginning of the line to line it up with the previous
line. You cannot backspace over this indentation, but you can use tD
key to backtab over the supplied indentation.

3-22 vi

(,-
'-.., .'

,r---'.
(

\ _.

/~ ..
(

o

o

o

o

o

SECTION 1 Editors

Each time you type tD you back up one position, normally to an 81

column boundary. This amount is settable; the editor has an option
called shiftwidth which lets you change this value. Try giving the com­
mand :se sw=4RETURN and then experimenting with autoindent again.

For shifting lines in the program left and right, there are operators <
and >. These shift the lines you specify right or left by one shiftwidth.
Try < < and> > which shift one line left or right, and <L and >L
which shift the rest of the display left and right.

If you have a complicated expression and wish to see how the parentheses
match, put the cursor at a left or right parenthesis and hit %. This will
show you the matching parenthesis. This works also for braces { and },
and brackets [and].

If you are editing C programs, you can use the [[and]] keys to advance
or retreat to a line starting with a {, i.e., a function declaration at a
time. When]] is used with an operator, it stops after a line which starts
with }; this is sometimes useful with y]].
3.7.7 Filtering Portions of the Buffer

You can run system commands over portions of the buffer using the
operator !. You can use this to sort lines in the buffer, or to reformat
portions of the buffer with a pretty-printer. Try typing in a list of ran­
dom words, one per line and ending them with a blank line. Back up to
the beginning of the list, and then give the command !}sortRETVRN.
This says to sort the next paragraph of material, and the blank line ends
a paragraph.

3.7.8 Commands for Editing LISP

If you are editing a LISP program, you should set the option lisp by
doing

:se lispRETURN.

This changes the (and) commands to move backwards and forwards
over s-expressions. The { and} commands are like (and) but don't
stop at atoms. These can be used to skip to the next list, or through a
comment quickly.

The auto indent option works differently for LISP, supplying indent to
align at the first argument to the last open list. If there is no such argu­
ment then the indent is two spaces more than the last level.

There is another option which is useful for typing in LISP, the
showmatch option. Try setting it with

:se smRETURN

and then try typing a "(" some words and then a")". Notice that the
cursor shows the position of the "(" which matches the ")" briefly. This
happens only if the matching "(" is on the screen, and the cursor stays
there for at most one second.

vi 3-23

SECTION 1 Editors

The editor also has an operator to realign existing lines as though they
had been typed in with lisp and auto indent set. This is the = opera­
tor. Try the command =% at the beginning of a function. This will
realign all the lines of the function declaration.

When you are editing LISP, the [[and]] advance and retreat to lines
beginning with a (, and are useful for dealing with entire function
definitions.

3.7.9 Macros

Vi has a parameterless macro facility, which lets you set it up so that
when you hit a single keystroke, the editor will act as though you had hit
some longer sequence of keys. You can set this up if you find yourself
typing the same sequence of commands repeatedly.

Briefly, there are two types of macros:

a) Ones where you put the macro body in a buffer register,
say x. You can then type @x to invoke the macro. The @

may be followed by another @ to repeat the last macro.

b) You can use the map command from vi (typically in your
EXINIT) with a command of the form:

:map lhs rhsRETURN

mapping lhs into rhs. There are restrictions: lhs should be
one keystroke (either 1 character or one function key) since
it must be entered within one second (unless notimeout is
set, in which case you can type it as slowly as you wish,
and vi will wait for you to finish it before it echoes any­
thing). The lhs can be no longer than 10 characters, the
rhs no longer than 100. To get a space, tab or newline into
lhs or rhs you should escape them with a lV. (It may be
necessary to double the lV if the map command is given
inside vi, rather than in ex.) Spaces and tabs inside the rhs
need not be escaped.

Thus to make the q key write and exit the editor, you can give the com­
mand

:map q :wqlVlVRETURN RETURN

which means that whenever you type q, it will be as though you had
typed the four characters :wqRETURN. A lV's is needed because
without it the RETURN would end the: command, rather than becoming
part of the map definition. There are two lV's because from within vi,
two lV's must be typed to get one. The first RETURN is part of the rhs,
the second terminates the : command.

Macros can be deleted with

unmap lhs

3-24 vi

C~

----------------------- .. _-_ ... _._--._. __ _ __ .. __ _ .. _ ..

o

o

o

o

SECTION 1 Editors

If the lhs of a macro is "#0" through "#9", this maps the particular
function key instead of the 2-character "#" sequence. So that terminals
without function keys can access such definitions, the form "#x" will
mean function key x on all terminals (and need not be typed within one
second.) The character "#" can be changed by using a macro in the
usual way:

:map iViViI #

to use tab, for example. (This won't affect the map command, which still
uses #, but just the invocation from visual mode.)

The undo command reverses an entire macro call as a unit, if it made
any changes.

Placing a "I" after the word map causes the mapping to apply to input
mode, rather than command mode. Thus, to arrange for iT to be the
same as 4 spaces in input mode, you can type:

:map iT i~~~~
where)S is a blank. The iV is necessary to prevent the blanks from
being taken as white space between the lhs and rhs.

3.8 ABBREVIATIONS

3.8.1 Word Abbreviations

Word abbreviation is similar to the macro feature. It allows you to type
a short word and have it expanded into a longer word or words. The
commands are :abbreviate and :unabbreviate (:ab and :una) and
have the same syntax as :map. For example:

:ab dfs distributed file system

causes the word "dfs;' to always be changed into the phrase "distributed
file system". Word abbreviation is different from macros in that only
whole words are affected. If "dfs" were typed as part of a larger word, it
would be left alone. Also, the partial word is echoed as it is typed.
There is no need for an abbreviation to be a single keystroke, as it should
be with a macro.

3.8.2 Editor Command Abbreviations

The editor has a number of short commands that abbreviate longer com­
mands which we have introduced here. They often save a bit of typing,
and you can learn them as convenient.

3.9 MORE DETAILS

This section includes information on vi commands that will probably be
of interest only to those who are doing advanced or specialized editing
tasks. This information is not required knowledge for those who are
merely using vi to edit text.

vi 3-25

SECTION 1 Editors

3.g.1 Line Representation in the Display

The editor folds long logical lines onto many physical lines in the display.
Commands which advance lines advance logical lines and will skip over
all the segments of a line in one motion. The command I moves the cur­
sor to a specific column, and may be useful for getting near the middle of
a long line to split it in half. Try 801 on a line which is more than 80
columns long.

Note: You can make long lines very easily by using J to join
together short lines.

The editor only puts full lines on the display; if there is not enough room
on the display to fit a logical line, the editor leaves the physical line
empty, placing only an @ on the line as a place holder. When you delete
lines on a dumb terminal, the editor will often just clear the lines to @ to
save time (rather than rewriting the rest of the screen.) You can always
maximize the information on the screen by giving the tR command.

If you wish, you can have the editor place line numbers before each line
on the display. Give the command :se nuRETURN to enable this, and
the command :se nonuRETURN to turn it off. You can have tabs
represented as tl and the ends of lines indicated with "$" by giving the
command :se listRETURN; :se nolistRETURN turns this off.

Finally, lines consisting of only the character ,,- " are displayed when
the last line in the file is in the middle of the screen. These represent
physical lines which are past the logical end of file.

3.g.2 Counts

Most vi commands will use a preceding count to affect their behavior in
some way. The following table gives the common ways in which the
counts are used:

new window size
scroll amount
line/column number
repeat effect

: / ? [[]]' ,
tD tU
zGI
most of the rest

The editor maintains a notion of the current default window size. On
terminals which run at speeds greater than 1200 baud, the editor uses the
full terminal screen. On terminals which are slower than 1200 baud
(most dialup lines are in this group), the editor uses 8 lines as the default
window size. At 1200 baud, the default is 16 lines.

This size is the size used when the editor clears and refills the screen
after a search or other motion moves far from the edge of the current
window. The commands which take a new window size as count often
cause the screen to be redrawn. If you anticipate this, but do not need
as large a window as you are currently using, you may wish to change
the screen size by specifying the new size before these commands. In any

3-26 vi

(~,
'- -.--,.,

('
~ ... '

C~

o

o

o

0

o

SECTION 1 Editors

case, the number of lines used on the screen will expand if you move off
the top with a - or similar command or off the bottom with a command
such as RETURN or jD. The window will revert to the last specified size
the next time it is cleared and refilled.

Note: This will not happen if you use a jL, which just redraws the
screen as it is.

The scroll commands jD and jU likewise remember the amount of scroll
last specified, using half the basic window size initially. The simple
insert commands use a count to specify a repetition of the inserted text.
Thus lOa+--ESC will insert a grid-like string of text. A few com­
mands also use a preceding count as a line or column number.

Except for a few commands which ignore any counts (such as jR), the
rest of the editor commands use a count to indicate a simple repetition of
their effect. Thus 5w advances five words on the current line, while
5RETURN advances five lines. A very useful instance of a count as a
repetition is a count given to the. command, which repeats the last
changing command. If you do dw and then 3., you will delete first one
and then three words. You can then delete two more words with 2 •.

3.9.3 More File Manipulation Commands

The following table lists the file manipulation commands which you can
use when you are in vi.

:w write back changes
:wq write and quit
:x write (if necessary) and quit (same as ZZ).
:e name edit file name
:e! re-edit, discarding changes
:e + name edit, starting at end
:e +n edit, starting at line n
:e # edit alternate file
:w name write file name
:w! name overwrite file name
:x,YW name write lines x through y to name
:r name read file name into buffer
:r ! cmd read output of cmd into buffer
:n edit next file in argument list
:n! edit next file, discarding changes to current
:n args specify new argument list
:ta tag edit file containing tag tag, at tag

All of these commands are followed by a RETURN or ESC. The most
basic commands are :w and :e. A normal editing session on a single file
will end with a ZZ command. If you are editing for a long period of
time you can give :w commands occasionally after major amounts of
editing, and then finish with a ZZ. When you edit more than one file,
you can finish with one by doing a :w then start editing a new file by

vi 3-27

SECTION 1 Editors

giving a :e command, or set autowrite and use :n < file> .

If you make changes to the editor's copy of a file, but do not wish to
write them back, then you must give an ! after the command you would
otherwise use; this forces the editor to discard any changes you have
made. Use this carefully.

The :e command can be given a + argument to start at the end of the
file, or a +n argument to start at line n. In actuality, n may be any edi­
tor command not containing a space, often a scan like + / pat or +? pat.
In forming new names to the e command, you can use the character %
which is replaced by the current file name, or the character # which is
replaced by the alternate file name. The alternate file name is generally
the last name you typed other than the current file. Thus, if you try to
do a :e and get a diagnostic that you haven't written the file, you can
give a :w command and then a :e # command to redo the previous :e.

You can write part of the buffer to a file by finding out the lines that
bound the range to be written using jG, and giving these numbers after
the: and before the w, separated by ,'so You can also mark these lines
with m and then use an address of the form ' x, ' y on the w command
here.

You can read another file into the buffer after the current line by using
the :r command. You can similarly read in the output from a command,
just use! cmd instead of a file name.

If you wish to edit a set of files in succession, you can give all the names
on the command line, and then edit each one in turn using the command
:n. It is also possible to respecify the list of files to be edited by giving
the :n command a list of file names, or a pattern to be expanded as you
would have given it on the initial vi command.

If you are editing large programs, you will find the :ta command very
useful. It utilizes a data base of function names and their locations,
which can be created by programs such as ctags, to quickly find a func­
tion whose name you give. If the :ta command will require the editor to
switch files, then you must :w or abandon any changes before switching.
You can repeat the :ta command without any arguments to look for the
same tag again.

3.9.4 More About Searching for Strings

When you are searching for strings in the file with / and?, the editor
normally places you at the next or previous occurrence of the string. If
you are using an operator such as d, c or y, then you may well wish to
affect lines up to the line before the line containing the pattern. You can
give a search of the form / pat/ -n to refer to the n'th line before the next
line containing pat, or you can use + instead of - to refer to the lines
after the one containing pat. If you don't give a line offset, then the edi­
tor will affect characters up to the match place, rather than whole lines;

3-28 vi

c

o

o

o

o

o

SECTION 1 Editors

thus, use "+0" to affect up to the line which matches.

You can have the editor ignore the case of words in the searches it does
by giving the command :se icRETURN. The command :se· noicRETURN
t urns this off.

Strings given to searches may actually be regular expressions. If you do
not want or need this facility, you should

set nomagic

in your EXINIT. In this case, only the characters j and $ are special in
patterns. The character \ is also then special (as it is most everywhere in
the system), and may be used to get at the extended pattern matching
facility. It is also necessary to use a \ before a / in ~ forward seanor a ?
in a backward scan, in any case. The following table gives the extended
forms when magic is set.

t
$

\<
\>
[str]
[tstr]
[x-y]
*

at beginning of pattern, matches beginning of lme
at end of pattern, matches end of line
matches any character
matches the beginning of a word
matches the end of a word
matches any single character in str
matches any single character not in str
matches any character between x and y
matches any number of the preceding pattern

If you use no magic mode, then the. [and * primitives are given with a
preceding \.

3.9.5 More About Input Mode

There are a number of characters which you can use to make corrections
during input mode. These are summarized in the following table.

til
tW
erase
kill
\
ESC
DEL
RETURN

tD
otD
ttD
tV

deletes the last input character
deletes the last input word, defined as by b
your erase character, same as tH .
your kill character, deletes the input on this line
escapes a following tH and your erase and kill
ends an insertion .
interrupts an insertion, terminating it abnormally
starts a new line
backtabs over autoindent
kills all the autoa'ndent
same as OtD, but restores indent next line
~uotes the next non-printing character into the file

The most common way of making corrections to input is by typing jH to
correct a single character, or by typing one or more jW's to back over
incorrect words. If you use # as your erase cl;taracter in the normal sys­
tem, it will work like jH.

vi 3-29

SECTION 1 Editors

Your system kill character, normally @, jX or jU, will erase all the
input you have given on the current line. In general, you can neither
erase input back around a line boundary nor can you erase characters
which you did not insert with this insertion command. To make correc­
tions on the previous line after a new line has been started you can hit
ESC to end the insertion, move 'over and make the correction, and then
return to where you were to continue. The command A which appends
at the end of the current line is often useful for continuing.

If you wish to type in your erase or kill character (say # or @) then you
must precede it with a \, just as you would do at the normal system
command level. A more general way of typing non-printing characters
into the file is to precede them with a jV. The jV echoes as a j charac­
ter on 'which the cursor rests. This indicates that the editor expects you
to type a control character. In fact, you may type any character and it
will be inserted into the file at that point.

Note: Almost any character. The implementation of the editor does
not allow the NULL (j@) character to appear in files. Also the
LF (linefeed or j J) character is used by the editor to separate
lines in the file, so it cannot appear in the middle of a line.
You can insert any other character, however, if you wait for
the editor to echo the j before you type the character. In
fact, the editor will treat a following letter as a request for
the corresponding control character. This is the only way to
type jS or jQ, since the system normally uses them to
suspend and resume output and never gives them to the edi­
tor to process.

If you are using autoindent, you can backtab over the indent which it
supplies by typing a jD. This backs up to a shiftwidth boundary. This
only works immediately after the supplied autoindent.

When you are using autoindent, you may wish to place a label at the
left margin of a line. The way to do this easily is to type j and then jD.
The editor will move the cursor to the left margin for one line, and
restore the previous indent on the next. You can also type a 0 followed
immediately by a jD if you wish to kill all the indent and not have it
come back on the next line.

3.Q.6 Uppercase Only Terminals

Note: We do not support uppercase-only terminals.

3.Q.7 Vi and ex

Vi is actually one mode of editing within the editor ex. When you are
running vi you can escape to the line-oriented editor of ex by giving the

3-30 vi

c

o

o

o

o

o

SECTION 1 Editors

command Q. All of the: commands which were introduced above are
available in ex. Likewise, most ex commands can be invoked from vi
using:. Just give them without the: and follow them with a RETURN.

In rare instances, an internal error may occur in vi. In this case, you will
get a diagnostic and be left in the command mode of ex. You can then
save your work and quit if you wish by giving a command x after the:
which ex prompts you with, or you can reenter vi by giving ex a vi com­
mand.

There are a number of things which you can do more easily in ex than in
vi. Systematic changes in line-oriented material are especially easy. You
can read the advanced editing documents for the editor ed to find out a
lot more about this style of editing. Experienced users often mix their
use of ex command mode and vi command mode to speed the work they
are doing.

3.9.8 Open Mode: vi on Hardcopy Terminals and "Glass
TTY's"

If you are on a hardcopy terminal or a terminal which does not have a
cursor which can move off the bottom line, you can still use the com­
mand set of vi, but in a different mode. When you give a vi command,
the editor will tell you that it is using open mode. This name comes
from the open command in ex, which is used to get into the same mode.

The only difference between visual mode and open mode is the way in
which the text is displayed.

In open mode, the editor uses a single line window into the file, and mov­
ing backwards and forwards in the file causes new lines to be displayed,
always below the current line. Two vi commands work differently in
open mode: z and iRe The z command does not take parameters in
open mode. Instead, it draws a "window of context" around the current
line, then returns you to the current line.

If you are using a hardcopy terminal, the iR command retypes the
current line as two lines: the first line is the unedited line, the second is
the edited line. When you delete characters, the editor types a number
of \'s to show you the characters which are deleted. The editor also
reprints the current line soon after such changes so that you can see·
w hat the line looks like again.

It is sometimes useful to use this mode on very slow terminals which can
support vi in the full screen mode. You can do this by entering ex and
using an open command.

3.10 A SUMMARY OF vi COMMANDS

This section summarizes the various vi editing and cursor motion com­
mands. In it, we use the following notational conventions. [option] is
used to denote optional parts of a command. Many vi commands have

vi 3-31

SECTION 1 Editors

an optional count. [cnt] means that an optional number may precede the
command to multiply or iterate the command.

{variable item} is used to denote parts of the command which must
appear, but can take a number of different values.

<character [-character] > means that the character or one of the
characters in the range described between the two angle brackets is to be
typed. For example <esc> means the escape key is to be typed. <a­
z> means that a lower case letter is to be typed.

i < character> means that the character is to be typed as a control
character, that is, with the CTRL key held down while simultaneously
typing the specified character. In this document, control characters will
be denoted using the uppercase character, but i<uppercase chr> and
i < lowercase chr> are equivalent. For example, < iD > is equal to
< i d > . The most common character abbreviations used in this list are
as follows:

<esc> escape, octal 033

< cr > carriage return, iM, octal 015

<If> linefeed i J, octal 012

<nl> newline, i J, octal 012 (same as linefeed)

<bs> backspace, iH, octal 010

<tab> tab, iI, octal 011

<bell> bell, lG, octal 07

<if> formfeed, iL, octal 014

<sp> space, octal 040

< del> delete, octal 0177

3.10.1 Entry and Exit

To enter vi on a particular file, type

vi file

The file will be read in and the cursor will be placed at the beginning of
the first line. The first screenfull of the file will be displayed on the ter­
minal.

To get out of the editor, type

ZZ
If you are in some special mode, such as input mode or the middle of a
multi-keystroke command, it may be necessary to type <esc> first.

3-32 vi

C~'

'\

c'

o

o

o

o

SECTION 1 Editors

3.10.2 Cursor and Page Motion

[cnt] <bs> or [cnt]h or [cnt]+-

Move the cursor to the left one character.
Cursor stops at the left margin of the page.
If cnt is given, these commands move that
many spaces.

[cnt]iN or [cntU or [cnt]! or [cnt] <If>

Move down one line. Moving off the screen
scrolls the window to force a new line onto
the screen. Mnemonic: Next

[cnt]iP or [cnt]k or [cnt]i Move up one line. Moving off the top of the
screen forces new text onto the screen.
Mnemonic: Previous

[cnt] <sp > or [cnt]l or [cnt]--;.

[cnt]-

[cnt]+ or [cnt] < cr>

[cnt]$

o

[cnt] I

[cnt]w

[cnt]W

vi

Move to the right one character. Cursor will
not go beyond the end of the line.

Move the cursor up the screen to the begin­
ning of the next line. Scroll if necessary.

Move the cursor down the screen to the
beginning of the next line. Scroll up if neces­
sary.

Move the cursor to the end of the line. If
there is a count, move to the end of the line
"cnt" lines forward in the file.

Move the cursor to the beginning of the first
word on the line.

Move the cursor to the left margin of the
current line.

Move the cursor to the column specified by
the count. The default is column zero.

Move the cursor to the beginning of the next
word. If there is a count, then move forward
that many words and position the cursor at
the beginning of the word. Mnemonic: next­
word

Move the cursor to the beginning of the next
word which follows a "white space"
«sp>,<tab>, or <nl». Ignore other
punctuation.

3-33

SECTION 1 Editors

[cnt]b

[cnt]B

[cnt]e

[cnt]E

Move the cursor to the preceding word.
Mnemonic: backup-word

Move the cursor to the preceding word that is
separated from the current word by a "white
space" «sp>,<tab>, or <nl».

Move the cursor to the end of the current
word or the end of the" cnt" 'th word hence.
Mnemonic: end-of-word

Move the cursor to the end of the current
word which is delimited by "white space"
«sp>,<tab>, or <nl».

[line number]G Move the cursor to the line specified. Of par­
ticular use are the sequences" 1 G" and" G" ,
which move the cursor to the beginning and
the end of the file respectively. Mnemonic:

Note:

[cnt]jD

[cnt]iU

[cnt]iF

[cnt]iB

[cnt](

[cnt])

[cnt]}

3-34

Go-to

The next four commands (iD, iU, iF, iB) are not true
motion commands, in that they cannot be used as the object
of commands such as delete or change.

Move the cursor down in the file by "cnt" lines (or
the last" cnt" if a new count isn't given. The initial
default is half a page.) The screen is simultaneously
scrolled up. Mnemonic: Down

Move the cursor up in the file by "cnt" lines. The
screen is simultaneously scrolled down. Mnemonic:
Up

Move the cursor to the next page. A count moves
that many pages. Two lines of the previous page are
kept on the screen for continuity if possible.
Mnemonic: Forward-a-page

Move the cursor to the previous page. Two lines of
the current page are kept if possible. Mnemonic:
Backup-a-page

Move the cursor to the beginning of the next sen­
tence. A sentence is defined as ending with a " ." ,
"!", or "1" followed by two spaces or a < nl >.

Move the cursor backwards to the beginning of a
sentence.

Move the cursor to the beginning of the next para­
graph. This command works best inside nroft' docu­
ments. It understands two sets of nroft' macros,

vi

~
I
\ '_.-

------------------------- ------------------------

SECTION 1

o

[cnt] {

]]

o

[[

o %

[cnt]H

o
[cnt]L

M

m<a-z>

o
vi

Editors

-InS and -mm, for which the commands ".LI" ,
" .LP", ".PP", ".QP", "P", as well as the nroif com­
mand ". bp", are considered to be paragraph delim­
iters. A blank line also delimits a paragraph. The
nroff macros that it accepts as paragraph delimiters
is adjustable. See paragraphs under the Set
Commands section.

Move the cursor backwards to the beginning of a
paragraph.

Move the cursor to the next "section", where a sec­
tion is defined by two sets of nroff macros, -InS and
-mm, in which " .H", ".SH", and ".H" delimit a sec­
tion. A line beginning with a <if> <nl> sequence,
or a line beginning with a "{" are also considered to
be section delimiters. The last option makes it use­
ful for finding the beginnings of C functions. The
nroff macros that are used for section delimiters can
be adjusted. See sections under the Set Com­
mands section.

Move the cursor backwards to the beginning of a
section.

Move the cursor to the matching parenthesis or
brace. This is very useful in C or lisp code. If the
cursor is sitting on a () { or }, the cursor is moved
to the matching character at the other end of the
section. If the cursor is not sitting on a brace or a
parenthesis, vi searches forward until it finds one
and then jumps to the match mate.

If there is no count, move the cursor to the top left
position on the screen. If there is a count, then
move the cursor to the beginning of the line" cnt"
lines from the top of the screen. Mnemonic: Home

If there is no count, move the cursor to the begin­
ning of the last line on the screen. If there is a
count, then move the cursor to the beginning of the
line" cnt" lines from the bottom of the screen.
Mnemonic: Last

Move the cursor to the beginning of the middle line
on the screen. Mnemonic: Middle

This command does not move the cursor, but it
mar ks the place in the file and the character " < a­
z >" becomes the label for referring to this location
in the file. See the next two commands. Mnemonic:
mark

3-35

SECTION 1 Editors

Note: The mark command is not a motion. It cannot be used as the
target of commands such as delete.

, <a-z>

, <a-z>

3.10.3 Searches

Move the cursor to the beginning of the line that is
marked with the label" < a-z >" .

Move the cursor to the exact position on the line
that was marked with the label" < a-z >".

Move the cursor back to the beginning of the line
where it was before the last "non-relative" move. A
"non-relative" move is something such as a search or
a jump to a specific line in the file, rather than mov­
ing the cursor or scrolling the screen.

Move the cursor back to the exact spot on the line
where it was located before the last "non-relative"
move.

The following commands allow you to search for items in a file.

[cnt]f{ chr} Search forward on the line for the next or cntth
occurrence of the character chr. The cursor is placed
at the character of interest. Mnemonic: find charac­
ter

[cnt]F{chr}

[cnt]t{ chr}

[cnt]T{chr}

[cnt];

[cnt] ,

Search backwards on the line for the next or cnt'th
occurrence of the character "chr". The cursor is
placed at the character of interest.

Search forward on the line for the next or cnt'th
occurrence of the character "chr". The cursor is
placed just preceding the character of interest.
Mnemonic: move cursor up to character

Search backwards on the line for the next or cnt'th
occurrence of the character "chr". The cursor is
placed just preceding the character of interest.

Repeat the last "f', "F", "t" or "T" command.

Repeat the last "f', "F", "t" or "T" command, but
in the opposite search direction. This is useful if you
overshoot.

[cnt]/[string]/RETURN

3-36

Search forward for the next occurrence of "string" .
Wraparound at the end of the file does occur. The
final < / > is not required.

vi

c

o

0

(')
~'

o

SECTION 1 Editors

[cnt]?[string]?RETURN

n

N

Search backwards for the next occurrence of
"string". If a count is specified, the count becomes
the new window size. Wraparound at the beginning
of the file does occur. The final <?> is not
required.

Repeat the last f[string]f or ?[string]? search.
Mnemonic: next occurrence.

Repeat the last f [string]f or ? [string]? search, but in
the reverse direction.

:gf[string]f[editor command] <nl>

Using the: syntax, it is possible to do global
searches in the style of the" ed" editor.

3.10.4 Text Insertion

The following commands allow for the insertion of text. All multicharac­
ter text insertions are terminated with an <esc> character. The last
change can always be undone by typing a u. The text insert in inser­
tion mode can contain newlines.

a{text }<esc>

A{text} <esc>

i { text} < esc>

I{text} <esc>

o{text} <esc>

O{text} <esc>

Insert text immediately following the cursor position.
Mnemonic: append

Insert text at the end of the current line. Mnemonic:
Append

Insert text immediately preceding the cursor posi­
tion. Mnemonic: insert

Insert text at the beginning of the current line.

Insert a new line after the line on which the cursor
appears and insert text there. Mnemonic: open new
line

Insert a new line preceding the line on which the
cursor appears and insert text there.

3.10.5 Text Deletion

The following commands allow the user to delete text in various ways.
All changes can always be undone by typing the u command.

[cnt]x Delete the character or characters starting at the
cursor position.

[cnt]X

D

vi

Delete the character or characters starting at the
character preceding the cursor position.

Deletes the remainder of the line starting at the cur­
sor. Mnemonic: Delete the rest of line

3-37

SECTION 1

[cnt]d{motion}

Editors

Deletes one or more occurrences of the specified
motion. Any motion from sections 4.1 and 4.2 can
be used here. The d can be stuttered (e.g. [cnt]dd)
to delete cnt lines.

3.10.6 Text Replacement

The following commands let you simultaneously delete and insert new
text. All such actions can be undone by typing u following the com-
mand. .

r<chr>

R{text }<esc>

[cnt]s{ text} < esc>

Replaces the character at the current cursor position
with <chr>. This is a one character replacement.
No < esc> is required for termination. Mnemonic:
replace character

Starts overlaying the characters on the screen with
whatever you type. It does not stop until an < esc>
is typed.

Substitute for" cnt" characters beginning at the
current cursor position. A" $" will appear at the
position in the text where the "cnt" 'th character
appears so you will know how much you are erasing.
Mnemonic: substitute

[cnt]S{text}<esc> Substitute for the entire current line (or lines). If no
count is given, a "$" appears at the end of the
current line. If a count of more than 1 is given, all
the lines to be replaced are deleted before the inser­
tion begins.

[cnt] c{motion} {text }<esc> Change the specified "motion" by replacing
it with the insertion text. A" $" will appear at the
end of the last item that is being deleted unless the
deletion involves whole lines. The specified
{motion} can be any motion listed in the sections
above. Stuttering the c (e.g. [cnt]cc) changes cnt
lines.

3.10.7 Moving Text

Vi provides a number of ways of moving chunks of text around. There
are nine buffers into which each piece of deleted or "yanked" text is put,
in addition to the "undo" buffer. The most recent deletion or yank is in
the "undo" buffer and also in buffer 1. The next most recent is in buffer
2, and so forth. Each new deletion pushes down all the older deletions.
Deletions older than 9 disappear. There is also a set of named registers,
a-z, into which text can optionally be placed. If any delete or replace­
ment type command is preceded by " < a-z >, that named buffer will
contain the text deleted after the command is executed. For example,
"a3dd will delete three lines starting at the current line and put them in
buffer "a.

3-38 vi

\'---

o

o

o

o

SECTION 1 Editors

Note: Referring to an upper case letter as a buffer name (A-Z) is the
same as referring to the lower case letter, except that text
placed in such a buffer is appended to it instead of replacing
it.

There are two more basic commands and some variations useful in get­
ting and putting text into a file.

[" <a-z>][cnt]y{motion} Yank the specified item or "cnt" items and put
in the "undo" buffer or the specified buffer. The
variety of "items" that can be yanked is the same as
those that can be deleted with the "d" command or
changed with the" c" command. In the same way
that" dd" means delete the current line and" cc"
means replace the current line, "yy" means yank the
current line.

[" <a-z>][cnt]Y

[" <a-z>]p

[" <a-z>]P

[cnt] > {motion}

vi

Yank the current line or the" cnt" lines starting
from the current line. If no buffer is specified, they
will go into the "undo" buffer, in the same manner
as any delete. It is equivalent to "yy". Mnemonic:
Yank

Put" undo" buffer or the specified buffer down after
the cursor. If whole lines were yanked or deleted
into the buffer, then they will be put down on the
line following the line the cursor is on. If something
else was deleted, like a word or sentence, tl1en it will
be inserted immediately following the cursor.
Mnemonic: put buffer

It should be noted that text in the named buffers
remains there when you start editing a new file with
the :e file<esc> command. Since this is so, it is
possible to copy or delete text from one file and
carry it over to another file in the buffers. However,
the undo buffer and the ability to undo are lost
w hen changing files.

Put" undo" buffer or the specified buffer down
before the cursor. If whole lines were yanked or
deleted into the buffer, then they will be put down
on the line preceding the line the cursor is on. If
something else was deleted, like a word or sentence,
then it will be inserted immediately preceding the
cursor.

The shift operator will right shift all the text from
the line on which the cursor is located to the line
w here the motion is located. The text is shifted by
one shiftwidth. > > means right shift the current

3-39

SECTION 1

[cnt] < {motion}

[cnt]={motion}

Editors

line or lines.

The shift operator will left shift all the text from the
line on which the cursor is located to the line where
the item is located. The text is shifted by one
shiftwidth. < < means left shift the current line
or lines. Once the line has reached the left margin it
is not further affected.

Prettyprints the indicated area according to lisp
conventions. The area should be a lisp s-expression.

3.10.8 Miscellaneous Commands

zz

tL
tR

u

U

[cnt]J

Q

3-40

This is the normal way to exit from vi. If any
changes have been made, the file is written out. You
are returned to the shell at that point.

Redraw the current screen.

On dumb terminals, those not having the" delete
line" function (the vt100 is such a terminal), vi saves
redrawing the screen when you delete a line by just
marking the line with an "@" at the beginning and
blanking the line. If you want to actually get rid of
the lines marked with"@" and see what the page
looks like, typing a tR will do this.

"Dot" is a particularly useful command. It repeats
the last text modifying command. Therefore, you
can type a command once and then move to another
place and repeat it by just typing" ." .

Perhaps the most important command in the editor,
u undoes the last command that changed the buffer.
Mnemonic: undo

Undo all the text modifying commands performed on
the current line since the last time you moved onto
it.

Join the current line and the following line. The
< nl > is deleted and the two lines joined, usually
with a space between the end of the first line and
the beginning of what was the second line. If the
first line ended with a "period" , then two spaces are
inserted. A count joins the next cnt lines.
Mnemonic: Join lines

Switch to ex editing mode. In this mode, vi will
behave very much like ed. The editor in this mode
will operate on single lines normally and will not

. attempt to keep the "window" up to date. Once in
this mode it is also possible to switch to the open

vi

C~

o

o

o

o

o

SECTION 1 Editors

mode of editing. By entering the command [line
number] open <nl>, you enter this mode. It is
similar to the normal visual mode except the window
is only one line long. Mnemonic: Quit visual mode

An abbreviation for a tag command. The cursor
should be positioned at the beginning of a word.
That word is taken as a tag name, and the tag with
that name is found as if it had been typed in a :tag
command.

[cnt]!{motion}{UNIX cmd}<nl>

z{cnt}<nl>

This -vi command lets lets you send a section
through any UNIX filter program, then replaces that
section of text with the output of that program.
Useful examples are programs like cb, sort, and
nrofl'. For instance, using sort it would be possible
to sort a section of the current file into a new list.
Using !! means take a line or lines starting at the
line the cursor is currently on and pass them to the
UNIX command.

This resets the current window size to cnt lines and
redraws the screen.

3.10.9 Special Insert Characters

jV

[iljD or [O]jD

jW

vi

During inserts, typing a jV allows you to quote con­
trol characters into the file. Any character typed
after the jV will be inserted into the file.

< jD > without any argument backs up one
shiftwidth. This is necessary to remove indenta­
tion that was inserted by the autoindent feature.
j < jD > temporarily removes all the autoindenta­
tion, thus placing the cursor at the left margin. On
the next line, the previous indent level will be
restored. This is useful for putting" labels" at the
left margin. 0 < jD > says remove all autoindents
and stay that way. Thus the cursor moves to the
left margin and stays there on successive lines until
<tab>'s are typed. As with the <tab>, the
< jD > is only effective before any other" non­
autoindent" controlling characters are typed.
Mnemonic: Delete a shiftwidth

If the cursor is sitting on a word, < jW> moves the
cursor back to the beginning of the word, thus eras­
ing the word from the insert. Mnemonic: erase
Word

3-41

SECTION 1

<bs>

Editors

The backspace always serves as an erase during
insert modes in addition to your normal" erase"
character. To insert a <bs> into your file, use the
< tV> to quote it.

3.10.10 ":" Commands

Typing a ":" during command mode causes vi to put the cursor at the
bottom on the screen in preparation for a command. In the":" mode, vi
can be given most ed commands. From this mode, you may exit from vi
or switch to editing a different file. All commands of this variety are ter­
minated by a <cr> or an <esc>.

:w [I] [file] Causes vi to write out the current text to the disk.
It is written to the file you are editing unless" file" is
supplied. If" file" is supplied, the write is directed to
that file instead. If that file already exists, vi will
not perform the write unless the"!" is supplied indi­
cating you really want to destroy the existing file.

:q[!] Causes vi to exit. If you have modified the file you
are looking at currently and haven't written it out,
vi will refuse to exit unless the"!" is supplied.

:e[!] [+[cmd]] [file] Start editing a new file called "file" or start editing
the current file over again. The command ":e!" says
"ignore the changes I've made to this file and start
over from the beginning". It is useful if you make
major editing errors. The optional" +" says instead
of starting at the beginning, start at the "end" , or, if
"cmd" is supplied, execute" cmd" first. Useful cases
of this are where cmd is "n" (any integer) which
starts at line number n, and" /text" , which searches
for "text" and starts at the line where it is found.

it Switch back to the place you were before your last
tag command. If your last tag command stayed
within the file, it returns to that tag. If you have
no recent tag command, it will return to the same
place in the previous file that it was showing when
you switched to the current file.

:n[!] Start editing the next file in the argument list. Since
vi can be called with multiple file names, the" :n"
command tells it to stop work on the current file and
switch to the next file. If the current file was
modified, it has to be written out before the" :n" will
work or else the"!" must be supplied, which says
discard the changes I made to the current file.

:n[!] file [file file ...] Replace the current argument list with a new list of
files and start editing the first file in this new list.

3-42 vi

~,
\ .

'---

o

o

o

o

SECTION 1

:r file

:r !cmd

:!cmd

:ta[!] tag

--- -------- -----------

Editors

Read in a copy of "file" on the line after the cursor.

Execute the ," cmd" and take its output and put it
into the file after the current line.

Execute any UNIX -shell command.

Vi looks in the file named tags in the current direc­
tory. Tags is a file of lines in the format:

tag filename vi-search-command

If vi finds the tag you specified in the :ta command,
it stops editing the current file if necessary and if the
current file is up to date on the disk, it switches to
the file specified and uses the search pattern specified
to find the" tagged" item of interest. This is partic­
ularly useful when editing multifile C programs.
There is a program called ctags which generates an
appropriate tags file for C and FORTRAN pro­
grams so that by saying :ta function < nl > you will
be switched to that function. It could also be useful
when editing multifile documents, though the tags
file would have to be generated manually.

3.10.11 Special Arrangements for Startup

Vi takes the value of $TERM and looks up the characteristics of that
terminal in the file /etc/termcap. If you don't know vi's name for the
terminal you are working on, look in /etc/termcap.

When vi starts, it attempts to read the variable EXINIT from your
environment. If EXINIT exists, vi takes the values in it as the default
values for certain of its internal constants. See the section on "Set
Values" for further details. If EXINIT doesn't exist, you will get all the
normal defaults.

To recover from a crash or inadvertent hangup, re-establish contact with
a UNIX shell, then type:

vi -r file

This will normally recover the file. If there is more th-an one temporary
file for a specific file name, vi recovers the newest one. You can get an
older version by recovering the file more than once. The command "vi
-r" without a file name gives you the list of files that were saved in the
last system crash (but not the file just saved when the phone was hung
up).

3.10.12 Set Commands

Vi has a number of internal variables and switches which can be set to
achieve special effects. These options come in three forms, those that are
switches, which toggle from off to on and back, those that require a
numeric value, and those that require an alphanumeric string value. The

vi 3-43

SECTION 1 Editors

toggle options are set by a command of the form:

:set option < nl >

and turned off with the command:

:set nooption < nl >

Commands requiring a value are set with a command of the form:

:set option=value<nl>

To display the value of a specific option type:

:set option? < nl >

To display only those that you have changed type:

:set<nl>

and to display the long table of all the settable parameters and their
current values type:

:set all < nl >
Most of the options have a long form and an abbreviation. Both are
listed in the following table as well as the normal default value.

To arrange to have values other than the default used every time you
enter vi, place the appropriate set command in EXINIT in your environ­
ment, e.g.

EXINIT='set ai aw terse sh=/bin/csh'
export EXINIT

or

setenv EXINIT 'set ai aw terse sh= /bin/ csh'

for the Bourne and C Shells respectively. These are usually placed in
your . profile or .login.

autoindent ai Default: noai Type: toggle

autoprint ap

autowrite aw

3-44

When in autoindent mode, vi helps you indent code
by starting each line in the same column as the
preceding line. Tabbing to the right with <tab> or
< iT> will move this boundary to the right. It can
be moved to the left with < iD >.

Default: ap Type: toggle
Causes the current line to be printed after each ex
text modifying command. This is not of much
interest in the normal vi visual mode.

Default: noaw type: toggle
Autowrite causes an automatic write to be done if
there are unsaved changes before certain commands
which change files or otherwise interact with the

vi

c'

c~'

SECTION 1

o
beautify bf

directory dir

error bells e b

hardtabs ht

o
ignore case ic

lisp

o
list

magic

o number nu

open

optimize opt

paragraphs para

o
vi

Editors

outside world. These commands are :!, :tag, :next,
:rewind, ii, and i]·

Default: nobf Type: toggle
Causes all control characters except < tab>, < nl > ,
and < ff> to be discarded.

Default: dir= jtmp Type: string
This is the directory in which vi puts its temporary
file.

Default: noeb Type: toggle
Error messages are preceded by a < bell>.

Default: hardtabs=8 Type: numeric
This option contains the value of hardware tabs in
your terminal, or of software tabs expanded by
DOMAIN/IX.

Default: noic Type: toggle
All upper case characters are mapped to lower case
in regular expression matching.

Default: nolisp Type: toggle
Autoindent for lisp code. The commands () [[and
]] are modified appropriately to affect s-expressions
and functions.

Default: nolist Type: toggle
All printed lines have the <tab> and <nl> char­
acters displayed visually.

Default: magic Type: toggle
Enable the metacharacters for matching. These
include. * < .> [string] [istring] and [< chr >­
<chr>].

Default: nonu Type: toggle.
Each line is displayed with its line number.

Default: open Type: toggle
When set, prevents entering open or visual modes
from ex or edit.

Default: opt Type: toggle
Basically of use only when using the ex capabilities.
This option prevents automatic < cr>s from taking
place, and speeds up output of indented lines.

Default: para=IPLPPPQPP bp Type: string
Each pair of characters in the string indicate nroft'
macros which are to be treated as the beginning of a
paragraph ,for the { and} commands. The default
string is for the -ms and -mm macros. To indicate

3-45

SECTION 1

prompt

redraw

report

scroll

sections

shell sh

shiftwidth sw

showmatch sm

3-46

Editors

one-letter nroff macros, such as .P or .H, quote a
space in for the second character position. For
example:

:set paragraphs=P\ bp<nl>

would cause vi to consider .P and .bp as paragraph
delimiters.

Default: prompt Type: toggle
In ex command mode the prompt character: will be
printed when ex is waiting for a command. This is
not of interest from vi.

Default: noredraw Type: toggle
On dumb terminals, force the screen to always be up
to date, by sending great amounts of output. Useful
only at high speeds.

Default: report=5 Type: numeric
This sets the threshold for the number of lines
modified. When more than this number of lines are
modified, removed, or yanked, vi will report the
number of lines changed at the bottom of the screen.

Default: scroll={1/2 window} Type: numeric
This is the number of lines that the screen scrolls up
or down when using the <iU> and <iD> com­
mands.

Default: sections=SHNlllI HU Type: string
Each two-character pair of this string specify nroff
macro names which are to be treated as the begin­
ning of a section by the]] and [[commands. The
default string is for the -InS and -mm macros. To
enter one-letter nroff macros, use a quoted space as
the second character. See paragraphs for a fuller
explanation.

Default: sh=from environment SHELL or /bin/sh
Type: string
This is the name of the sh to be used for "escaped"
commands.

Default: sw=8 Type: numeric
This is the number of spaces that a < iT> or
< iD > will move over for indenting, and the
amount < and> shift by.

Default: nosm Type: toggle
When a) or } is typed, show the matching (or { by
moving the cursor to it for one second if it is on the
current screen.

vi

~.
I

\
',---

o

o

o

o

SECTION 1

slowopen slow

tabstop ts

taglength tl

term

terse

warn

window

Editors

Default: terminal dependent Type: toggle
On terminals that are slow and unintelligent, this
option prevents the updating of the screen some of
the time to improve speed.

Default: ts=8 Type: numeric
<tab >s are expanded to boundaries that are multi­
ples of this value.

Default: tl=O Type: numeric
If nonzero, tag names are only significant to this
many characters.

Default: (from environment TERM, else dumb)
Type: string
This is the terminal and controls the visual displays.
To change term when in "visual" mode, you must Q
to command mode, type a set term command, then
re-enter vi. (You may also exit vi, change $TERM,
and reenter.) The definitions that drive a particular
terminal type are found in the file /etc/termcap.

Default: terse Type: toggle
When set, the error diagnostics are short.

Default: warn Type: toggle
You are warned if you try to escape to the shell
without writing out the current changes.

Default: window={8 at 600 baud or less, 16 at 1200
baud, and screen size - 1 at 2400 baud or more}
Type: numeric
This is the number of lines in the window whenever
vi must redraw an entire screen. It is useful to
make this size smaller if you are on a slow line.

w300, w1200, w9600 These set window, but only within the corresponding
speed ranges. They are useful in an EXINIT to
fine-tune window sizes. For example,

wrapscan ws

wrapmargin wm

vi

set w300=4 w1200=12

causes a 4 lines window at speed up to 600 baud, a
12 line window at 1200 baud, and a full screen (the
default) at over 1200 baud.

Default: ws Type: toggle
Searches will wraparound the end of the file when
this option is set. When it is off, the search will ter­
minate when it reaches the end or the beginning of
the file.

Default: wm=O Type: numeric
Vi will automatically insert a <nl> when it finds a

3-47

SECTION 1

writeany wa

3-48

Editors

natural break point (usually a <sp> between
words) that occurs within "wm" spaces of the right
margin. Therefore with "wm=O" the option is off.
Setting it to 10 would mean that any time you are
within 10 spaces of the right margin vi would be
looking for a <sp> or <tab> which it could
replace with a < nl >. This is convenient for people
who forget to look at the screen while they type.

Default: nowa Type: toggle
Vi normally makes a number of checks before it
writes out a file. This prevents the user from inad­
vertently destroying a file. When the "writeany"
option is enabled, vi no longer makes these checks.

vi

o

o

o

o

o

SECTION 1 Editors

Chapter 4: An Introduction to the DM Editor

4.1 THE DISPLAY MANAGER EDITOR

The Display Manager (DM) is the program that controls the display
screen of a DOMAIN node. In addition to its window-management func­
tions, the DM includes a highly programmable full-screen editor. This
editor handles all manipulation of text on the screen of your DOMAIN
node. It allows you to

• edit commands in the input pad of a shell window

• edit text in an "edit pad" window

• search the contents of an edit or transcript pad for a particular pat­
tern of characters

• copy text from one window and paste it into another window (or
another place in the same window) or write it to a disk file

• redefine the keyboard and function keys to suit the needs of the task
at hand.

In this chapter, we provide an introduction to the DM editor for
DOMAIN/IX users. Even though DOMAIN/IX includes several popular UNIX
editors (ed, ex, vi), the DM editor offers something the others don't: a
uniform editorial interface between you and any process requiring key­
board input.

All of the editing features described in this chapter apply to shell input
pads as well as to the edit pads used for creating text files. In addition,
the DM editor's pattern matching facilities can be used to search through
shell transcripts for data, old command lines, error messages, filenames,
and similar things. And, while you can't edit a transcript pad, you can
cut material out of it and paste it back into an input pad, where it can
be edited or resubmitted as is. You can also save sections of shell tran­
scripts for later examination and analysis. (See Chapter 1 of the
DOMAIN/ IX User's Guide for more on shells and transcript pads.) You
may prefer another editor for certain specific tasks, but a short time
spent learning the fundamentals of the DM editorial interface will allow
you to use the DOMAIN system in the most pleasant and efficient manner.

Each section in this chapter describes a set of editing tasks and the DM
commands you use to perform them. You can execute a DM command
by:

• pressing a key that has been mapped to a particular DM command or
command sequence (either with the default key definitions, or by a

DM Editor 4-1

SECTION 1 Editors

key definitions file you create),

• entering the command(s) at the

Command:

prompt in the DM input window.

The information in this chapter is only an introduction, meant to give
you some indication of what the DM editor does and - in some cases -
how it does it. For a complete description of all the DM editing com­
mands described in this chapter, refer to the DOMAIN System Command
Reference.

When you create a file using the DM editor, UNIX programs
will see it as owned by "root" until you explicitly specify
another owner of the file using the chown[l] command. In
this case, ownership is assigned to "root" only because the
real owner can't be determined. You will not have to log in
as "root" in order to change the ownership of these files.
Once ownership has been assigned, it will not be affeced by
further editing with the DM editor. It is especially important
to recognize this phenomenon when using the DM editor to
create .login, . cshrc and . profile files, since UNIX shells only
read these files if they are owned by the person opening the
shell.

4.2 OPENING AN EDIT PAD

To open an edit pad, use the DM command ce (normally mapped to the
I EDIT I key). If you press the I EDIT I key, you will be prompted to type a
filename

edit file:

in the DM input window. You may also use the direct form of the ce
command

Command: ce filename

where filename is the name of the file you want to edit.

If the named file exists, the DM will open an edit pad onto it and place
the cursor over the first character in the file. If the named file does not
exist, the DM will create it and open a blank edit pad.

If you want to open the pad in read-only mode, use the DM command cv
(normally mapped to the I READ I key). If you press the I READ I key, you
will be prompted

read file:

in the DM input window . You may also use the direct form of the cv
command

4-2 DM Editor

c~

(---
'---

o

o

o

o

o

SECTION 1 Editors

Command: ev filename

w here filename is the name of the file you want to edit.

If the named file exists, the DM will open an edit pad onto it, place the
pad in read-only mode, and place the cursor over the first character in
the file. If the named file does not exist, the DM will return an error mes­
sage.

4.3 SAVING THE CONTENTS OF AN EDIT PAD

An edit pad is a volatile area. All editing is done in a buffer, so all
changes made in an edit pad must be explicitly written to the file, other­
wise they will be lost. That's why the DM's pw (pad write) command is
so important. The pw command is normally mapped to the I SAVE I key.
You can also execute it in the DM input window by typing

Command: pw

If you follow a pw with a we command, the contents of the pad will be
written to disk and the window onto the pad will be closed. Otherwise,
the file will simply be updated and the pad left open.

Note: If you close a window onto an edit pad (by executing a we
command), all changes made since the last pw will be lost. If
you attempt to do this, the DM will prompt you with the fol-
lowing message in the DM input window. I

File modified. OK to quit?

You must type either y or D. An n will return the cursor to
the edit pad. A y will close the file and discard the changes.

The sequence pw; we (pad write, window close) is usually mapped to jY.
Pressing I CTRL I [Y] will update the file and close the window. The com­
mand pw is usually mapped to jW, so pressing I CTRL I [}Y] will update
the file and leave the window open.

The first time you execute a pw during an editing session on the file
filename, the DM, as you would expect, writes the contents of the edit
pad to the disk file filename. The next time you do a pw on filename,
the previous version is renamed filename. bake In this way, the dm always
keeps two versions of any file that has been saved more than once. The
filename version, which is the most recent, and the filename. bak version,
which is the second most recent.

4.4 EDIT PAD MODES

Edit pads can be opened in read-only mode or read/write mode. You
cannot, of course, make changes to the text in a read-only edit pad,
although you can copy, search, and scroll through the text. In write
mode, you can write to a pad and change text using all of the editing

DM Editor 4-3

SECTION 1 Editors

commands described in this chapter.

When a pad is in read-only mode, the letter R appears in the window
legend. The R disappears when the pad is put into read/write mode.
The DM command ro (normally mapped to iM) sets read-only mode. It
has the following format.

Command: ro [-on I-off]

If you do not specify an option, ro toggles the current mode setting. If
you've modified the text in a pad, you cannot change the pad to read­
only mode without first writing the changes to a disk file (saving the file).
The pw command, described in the previous section, allows you to write
your changes to a disk file without closing the pad and window.

The DM editor defaults to insert mode, although it can be reset to over­
strike mode. In insert mode, the DM inserts characters you type at the
current cursor position. The remainder of the line moves right to make
room for the new characters. In overstrike mode, characters you type
replace those under the cursor.

When a pad is in insert mode, the letter I appears in the window legend.
The I disappears when the pad is put into overstrike mode. All
read/write pads are initially opened in insert mode.

You can toggle in and out of insert mode by using the I INS I key (called
I INS MODE I on 880 keyboards). You can also use the DM command ei,
which has the following format:

Command: ei [-on I-off]

If you do not specify an option, the ei toggles the current mode.

Any attempt to type past the window border will result in a beep and a

No room for more text at that position

message from the DM. When this happens, press I RETURN I at the begin­
ning of the next line.

4.5 INSERTING CHARACTERS

Any pad that is in write mode automatically accepts any ASCII characters
that you type at the keyboard as input to that pad. Control characters
are ignored, since it is most often the case that control characters have
been mapped to DM functions, although there is a way to insert the ASCII
tab and End-of-File characters.

4.5.1 Inserting a Text String

The DM command es' string' inserts string at the current cursor position.
You'll probably find this command most useful in key definition com­
mands. For example, if you wanted to define the shifted CEil key to
insert the string Hi there, you would use the following key definition.

4-4 DM Editor

u

o

o

o

o

------------ -----------

SECTION 1 Editors

Command: kd fls es 'Hi there' ke

This sort of key definition can be done as needed by entering the com­
mand from the DM input window . You can also put these definitions
(like all key definitions) in a file, from which they can be loaded as neces­
sary.

4.5.2 Inserting an End-of-File Mark

To insert an end-of-file mark (EOF) in a pad, type I OTRL I rn or use the
DM command eef (insert EOF). If the line containing the cursor is
empty, the DM inserts the end-of-file mark on that line. Otherwise, the
DM inserts the end-of-file mark following the current line. The mark is
invisible.

4.5.3 Inserting a TAB

The DOMAIN/IX key definitions file unix_keys redefines the shifted I TAB I
key to insert an ASOII tab character. Normally, the I TAB I key simply
moves the cursor to the left.

4.6 DELETING TEXT

This section deals with commands for deleting characters, words, or lines
of text. To delete a larger block of text, refer to the section entitled
"Cutting Text."

4.6.1 Deleting Characters

The DM command ed, normally mapped to I OHAR DEL I , deletes the
character under the cursor. If the character under the cursor is a NEW­
LINE, ed joins the current line and the following line.

To delete the character to the left of the cursor, press I BAOK SP AOE I If
the pad is in overstrike mode, the ee command replaces the character
with a blank. Both I OHAR DEL I and I BAOK SPAOE I are repeat keys. You
can repeat the operation by holding down the key.

4.6.2 Deleting Words

The sequence of DM commands required to delete a word is normally
mapped to the [ffi function key. Pressing [ffi will delete everything
from the current cursor position to the next space, punctuation mark, or
special character (other than a dollar sign or underscore).

[ffi invokes the following command sequence:

dr;/[- a-zO-9$_1/xd

The DM writes the deleted word to its default paste buffer (a temporary
file). You can reinsert the word elsewhere by moving the cursor to the
desired location and pressing the I PASTE I key.

Note:

DM Editor

The default paste buffer is a volatile area. It only holds the
most recently deleted text object. Even a BAOK SPAOE will

4-5

SECTION 1 Editors

wipe it out (and overwrite the buffer with whatever you back­
spaced over).

4.6.3 Deleting Lines

To delete text from the current cursor position to the end of the line
(excluding the NEWLINE character), press the [EZJ key. In the default
key definitions file, this key is programmed to execute the following DM
command sequence.

es ' ';ee;dr;tr;xd;tl;tr

The DM writes the deleted line to its default paste buffer. You can rein­
sert the line elsewhere by either pressing or specifying the XP command
(see the note about the default paste buffer in the previous subsection).

4.7 DEFINING A RANGE OF TEXT

The editing commands that perform cut (delete), copy, and substitute
functions operate on a range, or block, of text. You mark the beginning
of a range of text by moving the cursor to the first character in that
range and pressing the I MARK I key. Once you have marked the begin­
ning of a range, move the cursor to the end of the range, then execute
one of the DM commands that operates on a range of text. In echo mode
(the default), text in the marked range will be highlighted. If you do not
specify literal points, dr places one mark at the current cursor position.

4.8 COPYING, CUTTING, AND PASTING TEXT

The commands discussed in this section allow you to move blocks of text
from one place to another in a pad, move text from one pad to another,
or move text into and out of named (or default) paste buffers.

Before specifying the commands that copy or cut text, use the dr com­
mand or I MARK I to define the range of text to be copied or cut (see the
previous section). If you do not define a range, the DM copies or cuts the
text from the current cursor position to the end of the line.

4.8.1 Using Paste Buffers

To perform copy, cut, and paste operations, the DM uses temporary files
called paste buffers. Paste buffers hold text you've copied or cut so that
you can paste it in elsewhere.

You can create up to one hundred paste buffers, each containing different
blocks of text. To create a paste buffer, you specify a name for the paste
buffer as an argument to the commands that copy or cut text (xc and
xd). To insert the contents of a paste buffer you created, specify the
name of the paste buffer as an argument to the command that pastes
text (xp). We describe the xc, xd, and xp commands in the next three
sections.

4-6 DM Editor

L)

o

o

o

SECTION 1 Editors

When you log off, the DM deletes all paste buffers you created during the
session. If you want to save the copied or cut text for use during another
session, you can write it to a permanent file (see the xc and xd command
descriptions in the next two sections).

If you do not specify the name of a paste buffer or permanent file when
you specify the commands that copy or cut text, the DM writes the text
to the default paste buffer. The DM also uses this default paste buffer
when you press the predefined function keys and control character
sequences that copy, delete, and paste text.

4.8.2 Copying Text

To copy a defined range of text from any pad into a paste buffer or file,
specify the xc command in the following format:

Command: xc [name I -f pathname] [-R]

w here name specifies the name of a paste buffer that the DM creates to
hold the copied text. The -f option specifies the name of a permanent
file for the text. For example:

Command: xc copy_text

copies a defined range of text into a paste buffer named copy_text.

Command: xc -f copy_text

copies a defined range of text into a permanent file named copy_text in
the current working directory. If you supply the name of an existing
paste buffer or file, xc overwrites its contents. If you omit the name of a
paste buffer or permanent file, xc writes the copied text to the default
(unnamed) paste buffer. The -r option instructs xc to copy a rectangular
block of text that you have defined by marking a column on the left side
of the text. Use the DR command or I MARK I column before entering the
xc -R command. xc then copies all characters to the right of the
specified column. By default, 880 keyboards invoke the xc command
using the default (unnamed) paste buffer. You must specify the xc com­
mand with the argument or the option if you want to copy text to a
named paste buffer or permanent file. Once you have copied a range of
text, you can use the xp command to paste the text in elsewhere (see the
"Pasting Text" section).

4.8.3 Cutting Text

When you cut text from a pad, the DM copies the text into a paste buffer
or file and then deletes it from the pad. To cut a defined range of text,
specify the command in the following format:

Command: xd [name I -f pathname] [-R]

where pathname specifies the name of a paste buffer that the DM creates
to hold the deleted text. The -f option specifies the name of a per­
manent file for the text. You can use this command only in pads created
with I EDIT I or via the ce command. If you supply the name of an

DM Editor 4-7

SECTION 1 Editors

existing paste buffer or file, xd overwrites its contents with the newly
deleted text. If you omit the name of a paste buffer or permanent file,
xd writes the deleted text to the default (unnamed) paste buffer. The-R
option instructs xd to delete a rectangular block of text, as described
above under the discussion of xc. By default, on 880 keyboards invoke
the xd command using the default (unnamed) paste buffer. You must
specify the xd command with the argument or the option to write
deleted text to a named paste buffer or permanent file, respectively.

Once you have cut a range of text, you can use the xp command
(described in the next section) to paste the text in elsewhere.

4.8.4 Pasting Text

To insert the contents of a paste buffer or file into a pad at the current
cursor position, specify the command in the following format:

Command: xp [name I -f pathname] [-R]

where pathname specifies the name of an existing paste buffer that con­
tains the text you want to insert. The -f option specifies the name of an
existing file that contains the text you want to insert. If you do not
specify the name of a paste buffer or permanent file, xp inserts the con­
tents of the default (unnamed) paste buffer.

The -R option instructs xp to insert a rectangular block of text that you
have copied or deleted using the xc or xd command and the -R option.
xp uses the current cursor position as the origin (upper left corner) of the
block.

4.9 USING REGULAR EXPRESSIONS

The DM allows you to use all regular expressions supported by the AEGIS
shell when doing search and substitute operations. While our regular
expression structure is similar to the ones supported by the various UNIX
shells and editors, it has numerous subtle differences. Read the DOMAIN
System Command Reference and DOMAIN System User's Guide for full
information on regular expressions. This chapter is just an overview,
so we won't deal with the topic here.

4.10 SEARCHING FOR TEXT

To search from the current cursor position forward for the pattern pat,
use the following DM command.

Command: / patl

To search backward from the current cursor position for pat, the com­
mand syntax is

Command: \pat\

4-8 DM Editor

c)

o

o

o

o

SECTION 1 Editors

In either case, the pat may be a regular expression.

A search operation moves the cursor to the first character in the specified
pat. If necessary, the pad moves under the window to display the match­
ing string. If the search fails, the cursor position does not change, and
the DM displays the message

No match

in its output window.

Searches do not wrap around the end or beginning of the file. Therefore,
to search an entire pad, you should position the cursor at the beginning
of the pad.

4.10.1 Case Sensitivity

By default, searches are not case sensitive. To perform a case-sensitive
search, you must first set case sensitivity on by executing the DM com­
mand

Command: sc -on

If the DM scans more than 100 lines in a search operation, it displays a

Searching ...

message in its output window, then polls for keystrokes after every 10
lines searched. You may cancel the search by typing I CTRL I [X] or by
pressing a key that has been defined to invoke the abrt or sq command.

To repeat the last forward search, use the command

Command: / /

To repeat the last backward search, use the command

Command: \ \

The DM saves the most recent search instruction, so you may repeat it
even if you have specified other (non-searching) commands since then.

4.10.2 Cancelling a Search Operation

To cancel the current search operation, type iX, mapped to the abrt
command. Since you cannot ty~M commands for the pad being
searched, you must use I CTRL IlXl or define a key to invoke abrt. (See
the "Defining Keys" section in the DOMAIN System User's Guide.)

The DM command also cancels a search operation. As with the abrt
command, you must define a key to invoke sq during a search. When
you type iX or press a key defined to invoke abrt or sq, the DM displays
the message "Search aborted" in its output window.

DM Editor 4-9

SECTION 1 Editors

4.11 SUBSTITUTING TEXT

Unlike searches, which ignore case unless told otherwise, all substitutions
are case-sensitive. If the DM scans more than 100 lines while processing a
substitute command, it displays a

Substitute in progress ...

message in its output window. Then it polls for keystrokes after every
10 lines it processes.

4.11.1 Substituting All Occurrences of a String

To replace all occurrences of a pat with a replacement, use the following
DM syntax:

Command: s[[/[pat]]/ replacement/]

Regular expressions are allowed in the pat, but not in the replacement.
An ampersand (&) in replacement expands to pat. For example

Command: s/Tom/ & Smith/

replaces all occurrences of "Tom" with "Tom Smith" over the defined
range of text. The s command does not move the cursor or the pad,
even if it makes changes in areas of the pad not visible through the win­
dow.

4.11.2 Substituting the First Occurrence of a String

The so command is like s except that so replaces only the first
occurrence of a string in each line of a defined range of text.

4.11.3 Changing the Case of Letters

To change the case of letters in a defined range of text, specify the com-
mand in the following format: .

Command: case [-s I -u I-I]
where -s swaps all uppercase letters for lowercase and all lowercase
letters for uppercase, -u forces all letters to uppercase, and -I forces all
letters to lowercase.

4.12 UNDOING PREVIOUS COMMANDS

To undo the most recent DM command you entered, use the I UNDO I key
(mapped to the DM command undo).

The undo command works by compiling a history of DM operations in
input and edit pads in reverse chronological order. UNDO reverses the
effect of the most recent DM command you specified. Successive UNDOs
reverse DM commands further back in history.

To compile its history of activities, the DM uses undo buffers (one per edit
pad and one per input pad). The undo buffers are circular lists that,
when full, eliminate the oldest entries to make room for new ones, so

4-10 DM Editor

~.
I

r·
.......

----------------------_ .. _---_ .. __ .. _---_._ ..

o

o

o

o

SECTION 1 Editors

that in practice, you may not be able to undo everything. The DM
groups entries together in sets. For example, a S (SUBSTITUTE) com­
mand may change five lines. While the DM considers this to be five
entries, the five entries are grouped into a single set so that one UNDO
will change all five lines back to their original state. When a buffer
becomes full, the DM erases the oldest of entries. This means that UNDO
will never partially undo an operation; it will either completely undo it or
do nothing. An undo buffer for an edit pad can hold up to 1024 entries.
An undo buffer for an input pad can hold up to 128 entries.

DM Editor 4-11

o
Index

?name, ed error message 1-5 < 2-17

., used by ed 1-7 > 2-17
abbreviate 2-7

A append 2-7

append, ed command 1-2 args 2-7

args, ex command 2-3 change 2-7

autoindent, vi option 3-29 copy 2-7
delete 2-8

0
B edit 2-8
buffer, used by ed 1-2 exit 2-16
buffers, named, in vi 3-16 file 2-8

global 2-9
C insert 2-10
case sensitivity join 2-10

in DM editor 4-9 list 2-10
in vi searches 3-29 map 2-10

context search, in vi 3-7 mark 2-10
control characters move 2-10

0 displayed by vi 3-14 n 2-11
to type in vi 3-30 next 2-11

counts, in vi commands 3-9, 3-15, 3-26 number 2-11
cut-and-paste open 2-11

using DM editor 4-7 preserve 2-11
using ed 1-15 print 2-11

DM edit pad put 2-11
to close 4-3 quit 2-12
to save 4-3 read 2-12

0 1
DM editor recover 2-12

.bak files 4-3 rewind 2-13
insert mode 4-4 set 2-13

dot, used by ed 1-7 shell 2-13
source 2-13

E stop 2-14
environment variables subsitute 2-13

EXINIT 2-1, 3-20 ta 2-14
TERM 3-4 un abbreviate 2-14

ESC, in vi· 3-5 undo 2-14

ex unmap 2-15
command abbreviations 2-4 verSIOn 2-15

command mode 2-4 visual 2-15

counts 2-4 write 2-15

report option 2-5 yank 2-16

Shell escape 2-17 z 2-16

0
text input mode 2-4 join 2-10

to scroll 2-18 EXINIT, environment variable 2-1, 3-20

ex commands exrc, options allowed in 2-20

Index 1

SECTION 1 Editors

/-~

I tB (to previous page) 3-35 ~ ... -~/
insert mode, in vi 3-10 tD (scroll down) 3-34

tF (to next page) 3-34
M tU (scroll up) 3-34
magic/nomagic, in vi 3-29]] (to next section) 3-35
metacharacters, used by ed 1-17 " (prev. context) 3-8

" (to previous context line) 3-36
N a (append) 3-37
next, ex command 2-3 b (back one word) 3-34

e (end of word) 3-34
p G (go to) 3-34
paste buffer H (home) 3-35

DM default 4-6 h (move left) 3-33
DM named 4-6 J (join) 3-22

regular expressions j (move down) 3-33
III ex 2-18 k (move up) 3-33 ~

\

In VI 3-29 kill (erase line) 3-30 '-_ .. ./

I (move right) 3-33
S L (to last screen line) 3-36
scroll, in ex 2-18 m (mark) 3-36
Shell escape M (to middle of screen) 3-36

from ex 2-17 n (next) 3-28
from vi 3-17 p (put) 3-16

shiftwidth, ex option 2-17 p (put) 3-39
substitute, ed command 1-9 to write/quit 3-6 ,~

u (undo) 3-41 (,

T w (to next word) 3-34
\.. .. _-

tab character, in vi 3-14 y (yank) 3-16
TERM environment variable, in vi 3-4 y (yank) 3-39
TERM CAP , used by ex/vi 2-1 ZZ 3-28
tset, to specify terminal type 3-4 ZZ 3-6

{ (to beginning of paragraph) 3-35
U } (to next paragraph.) 3-35
undo G (Go to) 3-8

(' in DM editor 4-11 vi options
"

In ex 2-14 autoindent 3-22 ',-

in vi 3-13 autowrite 3-28

V
vi, alternate file name 3-27
vi commands

% (to matching delimiter) 3-35
((to next sentence) 3-35
) (to prevo sentence) 3-35
+ (head of next line) 3-33
- (head of prev. line) 3-33
o (to left margin) 3-33
? (search backward) 3-37
[[(to beginning of this section) 3-35
, (goto marked line) 3-36 r ' (goto mark) 3-36
" (to previous context mark) 3-36

2 Index

!"-'
U

o

o

o

CONTENTS

1. A troff Tutorial 1-1
1.1 PREPARING AN INPUT Fll.,E 1-2

- 1.2 POINT SIZES AND LINE SPACING 1-2
1.3 FONTS AND SPECIAL CHARACTERS 1-5
1.4 INDENTATION AND LINE LENGTH 1-6
1.5 TABS 1-8
1.6 LOCAL MOTIONS, LINES, AND CHARACTERS 1-9
1.7 STRINGS 1-12
1.8 INTRODUCTION TO MACROS 1-13
1.9 TITLES, PAGES, AND NlJlvfBERING 1-14

1.9.1 Page Numbers 1-16
1.10 NlJlvfBER REGISTERS AND ARITHMETIC 1-16
1.11 MACROS WITH ARGUMENTS 1-18
1.12 CONDITIONALS 1-20
1.13 ENVIRONMENTS 1-22
1.14 DIVERSIONS 1-22

2. The troff Reference Manual 2-1
2.1 INTRODUCTION 2-1

2.1.1 Usage 2-1
2.1.2 Input File Format 2-3
2.1.3 Output Device Resolution 2-4
2.1.4 Numerical Parameter Input 2-4
2.1.5 Numerical Expressions 2-5
2.1.6 Notational Conventions 2-5

2.2 FONT AND CHARACTER SIZE CONTROL 2-5
2.2.1 Character Set 2-5
2.2.2 Fonts 2-6
2.2.3 Character Size 2-6

2.3 PAGE CONTROL 2-8
2.4 TEXT FILLING AND ADJUSTING 2-10

2.4.1 Filling and Adjusting 2-10
2.4.2 Interrupted Text 2-11

2.5 VERTICAL SPACING 2-12
2.5.1 Baseline Spacing 2-12
2.5.2 Extra Line Space 2-12
2.5.3 Blocks of Vertical Space 2-13

2.6 LINE LENGTH AND INDENTING 2-14
2.7 MACROS, STRINGS, DIVERSIONS, TRAPS 2-14

2.7.1 Macros and Strings 2-14
2.7.2 Copy Mode Input Interpretation 2-15
2.7.3 Arguments 2-15
2.7.4 Diversions 2-16
2.7.5 Traps 2-17·

2.8 NlJlvfBER REGISTERS 2-19
2.9 TABS, LEADERS, AND FIELDS 2-20

- i -

2.9.1 Tabs and Leaders 2-20
2.9.2 Fields 2-21

2.10 CONVENTIONS AND TRANSLATI'ONS 2-21
2.10.1 Input Character Translations 2-21
2.10.2 Ligatures 2-22
2.10.3 Backspacing, Underlining, Overstriking 2-22
2.10.4 Request Characters 2-23
2.10.5 Output Translation 2-23
2.10.6 Transparent Throughput 2-24
2.10.7 Comments and Concealed Newlines 2-24

2.11 LOCAL MOTIONS 2-24
2.11.1 Local Motions 2-24
2.11.2 The Width Function 2-25
2.11.3 The Horizontal Place Marker 2-25

2.12 OVERSTRIKES, BRACKETS, AND LINES 2-25
2.12.1 Overstriking 2-25
2.12.2 Zero-Width Characters 2-25
2.12.3 Large Brackets 2-25
2.12.4 Line Drawing 2-26

2.13 HYPHENATION 2-27
2.14 THREE-PART TITLES 2-28
2.15 OUTPUT LINE NUMBERING 2-28
2.16 CONDITIONAL ACCEPTANCE OF INPUT 2-29

2.16.1 Built-In Conditions 2-30
2.17 ENVIRONMENTS 2-30
2.18 INSERTIONS FROM STANDARD INPUT 2-31

2.18.1 Prompts 2-31
2.19 INPUT/OUTPUT FILE SWITCHING 2-32
2.20 MISCELLANEOUS REQUESTS 2-32
2.21 OUTPUT AND ERROR MESSAGES 2-33
2.22 FONT STYLE EXAMPLES 2-34
2.23 INPUT CHARACTER NAMES 2-35

2.23.1 Special Characters on Standard Fonts 2-35
2.23.2 Characters on the Special Font 2-35

2.24 SillvIMARY OF REQUESTS 2-38
2.24.1 Font and Character Size Control 2-38
2.24.2 Page·Control 2-39
2.24.3 Text Filling, Adjusting, and Centering 2-39
2.24.4 Vertical Spacing 2-39
2.24.5 Line Length and Indenting 2-40
2.24.6 Macros, Strings, Diversions, Traps 2-40
2.24.7 Number Registers 2-40
2.24.8 Tabs, Leaders, and Fields 2-41
2.24.9 I/O Conventions and Translations 2-41
2.24.10 Hyphenation 2-41
2.24.11 Three Part Titles 2-42
2.24.12 Output Line Numbering 2-42
2.24.13 Conditional Acceptance of Input 2-42

- ii -

\

'-

o

o

o

o

o

2.24.14 Environment Switching 2-43
2.24.15 Insertions from the Standard Input 2-43
2.24.16 Input/Output File Switching 2-43
2.24.17 Miscellaneous Requests 2-43

2.25 SUMMARY OF ESCAPE SEQUENCES 2-44
2.26 SUMMARY OF PRE-DEFINED GENERAL NUMBER

REGISTERS 2-45
2.27 SUMMARY OF PRE-DEFINED READ-ONLY

NUMBER REGISTERS 2-45

3. The -ms Macro Package 3-1
3.1 INTRODUCTION 3-1
3.2 COVER SHEETS AND FmST PAGES 3-1
3.3 PARAGRAPHS 3-2
3.4 PAGE HEADINGS 3-2
3.5 MULTI-COLUMN FORMATS 3-2
3.6 HEADINGS 3-3
3.7 INDENTED PARAGRAPHS 3-4
3.8 EMPHASIS 3-6
3.9 FOOTNOTES 3-7
3.10 DISPLAYS AND TABLES 3-8
3.11 BOXING WORDS OR LINES 3-8
3.12 KEEPING BLOCKS TOGETHER 3-9
3.13 NROFF /TROFF REQUESTS 3-9
3.14 DATE 3-9
3.15 REGISTERS 3-9
3.16 ACCENTS 3-10
3.17 PRINTING 3-11
3.18 TYPESETTING MATHEMATICS 3-12
3.19 BIBLIOGRAPHY ENTRIES 3-12
3.20 TABLE OF CONTENTS 3-13
3.21 SUMMARY OF -ms MACROS 3-14
3.22 SUMMARY OF -ms REGISTER NAMES 3-14

4. The -me Macro Package 4-1
4.1 INTRODUCTION 4-1
4.2 PARAGRAPHING 4-2
4.3 SECTION HEADINGS 4-2
4.4 HEADERS AND FOOTERS 4-4
4.5 DISPLAYS 4-5
4.6 ANNOTATIONS 4-7
4.7 MUL TI-COLUMN OUTPUT 4-8
4.8 FONTS AND SIZES 4-8
4.9 ROFF SUPPORT 4-9
4.10 PREPROCESSOR SUPPORT 4-10
4.11 MISCELLANEOUS MACROS 4-10
4.12 STANDARD PAPERS 4-11
4.13 PRE-DEFINED STRINGS 4-13
4.14 SPECIAL CHARACTERS AND MARKS 4-13

- iii -

5. The -mm Macro Package 5-1
5.1 INTRODUCTION 5-1
5.2 CONVENTIONS 5-1
5.3 INPUT F~E STRUCTURE 5-1
5.4 FORMATTERS 5-2
5.5 INVOKING THE MACROS 5-3

5.5.1 The mm Command 5-3
5.5.2 Using the -cm or -mm Flag 5-4
5.5.3 Typical Command Lines 5-4
5.5.4 Parameters Set on the Command Line 5-6
5.5.5 Omission of -cm or -mm 5-8

5.6 FORMATTING CONCEPTS 5-9
5.6.1 Basic Terms 5-9
5.6.2 Arguments and Double Quotes 5-9
5.6.3 Unpaddable Spaces 5-10
5.6.4 Hyphenation 5-10
5.6.5 Tabs 5-11
5.6.6 Special Use of the BEL Character 5-11
5.6.7 Bullets 5-12
5.6.8 Dashes, Minus Signs, and Hyphens 5-12
5.6.9 Trademark String 5-12

5.7 PARAGRAPHS AND HEADINGS 5-13
5.7.1 Paragraphs 5-13
5.7.2 Numbered Headings 5-14
5.7.3 Altering Heading Pre-Space 5-15
5.7.4 Heading Post-Space 5-15
5.7.5 Centered Headings 5-16
5.7.6 Format Control by Heading Level 5-16
5.7.7 Nroff Heading Underlining Styles 5-16
5.7.8 Heading Point Sizes 5-16
5.7.9 Marking Styles - 5-17
5.7.10 Unnumbered Headings 5-18
5.7.11 Headings and the Table of Contents 5-18
5.7.12 Page Numbering Style 5-18
5.7.13 User Exit Macros 5-19
5.7.14 Hints for Large Documents 5-21

5.8 LISTS 5-21
5.8.1 The Parts of a List 5-21
5.8.2 Sample Nested Lists 5-22
5.8.3 Common List Macros 5-23

5.8.3.1 List Item 5-23
5.8.3.2 List End 5-24

5.8.4 List Initialization Macros 5-24
5.8.4.1 Numbered and Alphabetized Lists 5-24
5.8.4.2 Bulletted List 5-25
5.8.4.3 Dashed List 5-25
5.8.4.4 Marked List 5-25
5.8.4.5 Reference List 5-26

- iv -

\.

o

o

o

o

o

5.8.4.6 Variable-Item List 5-26
5.8.5 List-Begin Macro and Customized Lists 5-27
5.8.6 User-Defined List Structures 5-29

5.9 DISPLAYS 5-31
5.9.1 Static Displays 5-32
5.9.2 Floating Displays 5-33
5.9.3 Tables 5-35
5.9.4 Equations 5-37
5.9.5 Captions 5-37
5.9.6 List of Figures, Tables, Etc. 5-38

5.10 FOOTNOTES 5-38
5.10.1 Automatic Numbering of Footnotes 5-38
5.10.2 Delimiting Footnote Text 5-38
5.10.3 Format of Footnote Text 5-39
5.10.4 Spacing Between Footnote Entries 5-40

5.11 PAGE HEADERS AND FOOTERS 5-40
5.11.1 Default Headers and Footers 5-41
5.11.2 Page Header 5-41
5.11.3 Even-Page Header 5-41
5.11.4 Odd-Page Header 5-42
5.11.5 Page Footer 5-42
5.11.6 Even-Page Footer 5-42
5.11.7 Odd-Page Footer 5-42
5.11.8 Footer on the First Page 5-42
5.11.9 Section-Page Numbering 5-42
5.11.10 Strings and Registers in Headers/Footers 5-42
5.11.11 Header and Footer Example 5-43
5.11.12 Generalized Top-of-Page Processing 5-43
5.11.13 Generalized Bottom-of-Page Processing 5-44
5.11.14 Top and Bottom Margins 5-44
5.11.15 Private Documents 5-45

5.12 TABLE OF CONTENTS AND COVER SHEET 5-45
5.12.1 Table of Contents 5-45

5.13 REFERENCES 5-47
5.13.1 Automatic Numbering of References 5-47
5.13.2 Delimiting Reference Text 5-48
5.13.3 Subsequent References 5-48
5.13.4 Reference Page 5-48

5.14 MISCELLANEOUS FEATURES 5-49
5.14.1 Bold, Italic, and Roman Type 5-49
5.14.2 Justification of Right Margin 5-50
5.14.3 SCCS Release Identification 5-50
5.14.4 Two-Column Output 5-50
5.14.5 Column Headings 5-51
5.14.6 Vertical Spacing 5-52
5.14.7 Skipping Pages 5-53
5.14.8 Forcing an Odd Page 5-53
5.14.9 Setting Point Size and Vertical Spacing 5-53

- v-

5.14.10 Producing Accents 5-54
5.14.11 Inserting Text Interactively 5-54
5.14.12 Bell Labs Macros 5-55
5.14.13 Date and Format Changes 5-55
5.14.14 "Copy to" and Other Notations 5-56
5.14.15 Approval Signature Line 5-57
5.14.16 Forcing a One-Page Letter 5-57

5.15 ERRORS AND DEBUGGING 5-57
5.15.1 Error Terminations 5-57
5.15.2 Disappearance of Output 5-58
5.15.3 MM Error Messages 5-58
5.15.4 Formatter Error Messages 5-60

5.16 EXTENDING AND MODIFYING THE MACROS 5-61
5.16.1 Naming Conventions 5-61
5.16.2 Names Used by Formatters 5-61
5.16.3 Names Used by -mm 5-61
5.16.4 Names Used by eqn, neqn, and tbl 5-62
5.16.5 User-Definable Names 5-62

5.17 SAMPLE EXTENSIONS 5-62
5.17.1 Appendix Headings 5-62
5.17.2 Hanging Indent with Tabs 5-63

5.18 SUMMARY OF MACROS, STRINGS, AND NillvIBER
REGISTERS 5-64
5.18.1 Macros 5-64
5.18.2 Strings 5-69
5.18.3 Number Registers 5-70

6. Eqn - a Pre-Processor for Text With Equations 6-1
6.1 INTRODUCTION 6-1
6.2 DISPLAYED EQUATIONS 6-1
6.3 SPACES AND NEWLINES 6-2

6.3.1 Input Spaces 6-2
6.3.2 Output Spaces 6-3

6.4 SYMBOLS, SPECIAL NAMES, GREEK 6-3
6.5 DELIMITING SPECIAL SEQUENCES 6-3
6.6 SUBSCRIPTS AND SUPERSCRIPTS 6-4
6.7 BRACES FOR GROUPING 6-4
6.8 FRACTIONS 6-5
6.9 SQUARE ROOTS 6-6
6.10 SUMMATION, INTEGRAL, ETC. 6-6
6.11 SIZE AND FONT CHANGES 6-7
6.12 DIACRITICAL MARKS 6-8
6.13 QUOTED TEXT 6-9
6.14 LINING UP EQUATIONS 6-9
6.15 LARGE DELIMITERS 6-10
6.16 PILES 6-11
6.17 MATRICES 6-12
6.18 SHO·RTHAND FOR IN-LINE EQUATIONS 6-12
6.19 DEFINITIONS 6-13

- vi -

"- _-

c~

--------------------------- ----------------

o

o

o

o

o

6.20 LOCAL MOTIONS 6-14
6.21 A LARGE EXAMPLE 6-14
6.22 KEYWORDS, PRECEDENCES, ETC. 6-15
6.23 TROUBLESHOOTING 6-17

7. Tbl - a Preprocessor for Formatting Tables 7-1
7.1 INTRODUCTION 7-1
7.2 INPUT 7-1
7.3 GLOBAL OPTIONS 7-2
7.4 FORMAT KEY-LETTERS 7-3

7.4.1 Horizontal Lines 7-5
7.4.2 Vertical Lines 7-5
7.4.3 Space Between Columns 7-5
7.4.4 Vertical Spanning 7-5
7.4.5 Font Changes 7-5
7.4.6 Point Size Changes 7-5
7.4.7 Vertical Spacing Changes 7-6
7.4.8 Column Width Indication 7-6
7.4.9 Equal Width Columns 7-6
7.4.10 Alternative Notation 7-6
7.4.11 Defaults 7-6

7.5 DATA 7-7
7.5.1 Troff Requests Within Tables 7-7
7.5.2 Full Width Horizontal Lines 7-7
7.5.3 Single Column Horizontal Lines 7-7
7.5.4 Short Horizontal Lines 7-7
7.5.5 Vertically Spanned Items 7-7
7.5.6 Text Blocks 7-7

7.6 ADDITIONAL COMMAND LINES 7-8
7.7 USAGE 7-9
7.8 EXAMPLES 7-11
7.9 SUMMARY OF COMMANDS AND KEY-LETTERS 7-21

- vii -

c-----
, --

~~
I

",-, ---'

o

,---.\
I ,
~/

o

Chapter 1: A troff Tutorial

Troft' is a text-formatting progra111 that produces output suitable for
various typesetting devices, including laser printers and phototypesetters.
This chapter (and, in fact, this entire book) is an example of troft' out­
put.

Most laser printers and phototypesetters make use of at least four fonts:
Roman, Italic, bold, and Greek, as well as a number of special characters
and mathematical symbols. Characters can be printed in a range of .
sizes, and placed anywhere on the page.

Troft' gives you full control over fonts, sizes, and character positions, as
well as the usual features of a fon11atter: right-margin justification,
automatic hyphenation, page titling and numbering, and so on. It" also
provides macros, arithmetic variables and operations, and conditional
testing for complicated formatting tasks.

This chapter is an introduction to the fundamentals of troft'. It presents
just enough information to help you with simple formatting tasks, and to
get you started with existing 111aCl'O packages. (See Chapters 3 and 4).
The other popular UNIX text fon11atter, nroft', has much in common
with troft'. This chapter serves as a tutorial on both.

In many ways, troft' resembles an assembly language, a remarkably
powerful and flexible one, but one in which many operations must be
specified in precise detail, and in a fOl'l11 that is too hard for most people
to use effectively. In most cases, it is far easier to access troff's facilites
through some intermediary, such as a pre-processor or a macro package.

There are two widely-used pre-processors, each of which has its own set
of commands. eqn provides an easy-to-Iearn language for typesetting
mathematics; the eqn user does not need to know any troft' commands
to typeset complex mathematical equations. The tbl pre-processor pro­
vides the same convenience for producing tables of arbitrary complexity.
Chapters 6 and 7 of this section deal with eqn and tbl, respectively.

For producing normal text (which nlay well contain mathematics or
tables), there are a nunlber of 1nacro packages that define formatting
rules and operations for specific styles of documents, and reduce the
amount of direct contact 'with troff to an acceptable level. In particular,
the -ms and -mm packages provide nlost of the facilities needed for a
wide range of document preparation tasks. (This document was prepared
using -mm.) You will probably find these packages easier to use than
"bare" troft' once you get beyond the nlost trivial operations; you should
always consider them first. Chapters 3, 4, and 5 of this section deal with
macro packages.

A troft' Tutorial 1-1

SECTION 2 Formatters

In the few cases where existing macro packages don't do the whole job,
it's not too difficult to customize the macro packages that already exist.
This is a far easier chore than writing a macro package from scratch.

In this chapter, we will describe only the more useful parts of troff. Our
emphasis is on showing how to do simple things, and how to make incre­
mental changes to what already exists.

1.1 PREPARING AN INPUT FILE

To use troff you have to embellish the actual text you want printed with
additional information that tells troff how you want it printed. This
information comes in two principal forms: requests, which are built in to
the troff program itself, and macros, which are built up from multiple
requests. The typical troff request is placed on a line by itself, separated
from the surrounding text by newlines, and begins with a period. For
example,

Some text .
. ps 16
Some more text.

will change the "point size" , that is, the size of the letters' being printed,
to "16 point" (one point is 1/72 inch) like this:

Some text. Some more text.
Occasionally, though, size changes and other things have to occur in the
middle of a line. For example, to produce

Area = 1rr 2

you have to type

Area = \(*p\fIr\fR\ I \s8\u2\d\sO

(the meaning of which we will explain shortly). The backslash character
\ is used to introduce troff commands and special characters within a
line of text.

1.2 POINT SIZES AND LINE SPACING

As mentioned above, the command sets the point size. One point is 1/72
inch, so 6-point characters are at most 1/12 inch high, and 36-point char­
acters are about six times as large (1/2 inch). There are 15 point sizes
available, as shown below.

1-2 A troff Tutorial

/
I

o

o

o

o

SECTION 2 Formatters

6 point: Pack rm' box with nve dozen liquor Jugs.
7 point: Pack my box with five dozen liquor jugs.
8 point: Pack my box with five dozen liquor jugs.
9 point: Pack my box with five dozen liquor jugs.
10 point: Pack my box with five dozen liquor
11 point: Pack my box with five dozen
12 point: Pack my box with five dozen
14 point: Pack my box with five

16 point 18 point 20 point

22 24 28 36
If the number after .ps is not one of these sizes, troff rounds it up to the
next value, with a maximum of 36. If no number follows .ps, troff
reverts to the previous size. Troff is initialized to a point size of 10.
This document is set in 12 point type.

The point size can also be changed in the middle of a line or even a word
with the in-line command \s. To produce

DOMAIN/IX is the DOMAIN system's distributed UNIX environment.

you could put the following line in your input file.

DOMAIN/IX is the \sI0DOMAIN\sO
system's distibuted \sI0UNIX\sO environment.

The \8 request should be followed by a legal point size or a zero (which
causes the point size to revert to its previous value).

Relative size changes are also legal and useful:

\s-2SMALL CAPS\s+2

temporarily decreases the current size by two points to obtain SMALL
CAPS, then restores it. Relative size changes have the advantage that the
size difference is independent of the starting size of the document. The
amount of the relative change is restricted to a single digit.

Note: You cannot request a relative size change greater than 9
points.

Another thing that determines the look of the type is the leading, or
spacing between lines. Troff allows you to specify vertical spacing
independently of point size. Vertical spacing is measured from the bot­
tom of one line to the bottom of the next. The command to control
vertical spacing is .vs. For running text, it is usually best to set the
vertical spacing about 20% bigger than the character size. This book
was set in "12 on 13.5," that is,

A troff Tutorial 1-3

SECTION 2

.ps 12

.vs 13.5p

If we changed to

.ps 9

.vs 9p

Formatters

the running text would look like this. After reading a few lines, you will
agree it 100K~.a little cramped. Vertical spacing is partly. a matt~r of
taste, dependIng on how much text you want to squeeze Into a gIven
space.J and partfy a matter of traditIonal printing style. By default, troff
uses ~O on 12.

Point size and vertical spacing make a substantial difference in the
amount of text per square inch. This is 12 on 13.5.

Point size and vertlcaJ spa.clng make a. substantial dltJerence In the armunt of text per
Squ&I'e Inch. For example, 10 on 12 uses a.bout twice as rrruch space as 7 on 8. 'Ibls Is 6 on
7, whlch Is even sma.ller. It packs a. lot m>re words per line, but you can go blind trying to
read It.

When used without arguments, .ps and .vs revert to the previous (or
default) size and vertical spacing respectively.

The command .sp is used to get extra vertical space. Unadorned, it
gives you one extra blank line (one .vs, whatever that has been set to).
Typically, that's more or less than you want, so .sp can be followed by
information about how much space you want:

.sp 2i

means "two inches of vertical space,"

.sp 2p

means "two points of vertical space"; and

.sp 2

means "two vertical spaces," two of whatever .vs is set to (this can also
be made explicit with .sp 2v); troff also understands decimal fractions in
most places, so

.sp 1.5i

is a space of 1.5 inches. These same scale factors can be used after • vs to
define line spacing, and after most commands that deal with physical
dimensions.

It should be noted that troff converts all size numbers to units of 1/432
inch (1/6 point), the resolution of the original typesetting machinery for
which troff was written. For most purposes, this is enough resolution
that you don't have to worry about accuracy of representation. The
situation is not quite so good vertically, where resolution is 1/144 inch
(1/2 point).

1-4 A troff Tutorial

~­

(

C)

o

o

c

SECTION 2 Formatters

1.3 FONTS AND SPECIAL CHARACTERS

Troft' and the typesetter allow four different fonts at anyone time. Nor­
mally, three fonts (Roman, Italic and bold) and one collection of special
characters are permanently mounted. Troft' prints in the Roman font
unless told otherwise. To switch into bold, use the .ft command

.ft B

and for italics, use

.ft I

To return to roman, use

.ft R

and to return to the previous font, whatever it was, use either

.ft P

or just .ft with no argument. The "underline" request

.ul

causes the next input line to print in italics. A .ul request can be fol­
lowed by a count to indicate that more than one line is to be italicized.

Fonts can also be changed within a line or even within a word by using
the in-line command \f

boldface text

is produced by

\fBbold\f1face\fR text

If you want to do this so the previous font is left undisturbed, insert
extra \fP commands, like this:

\fBbold\fP\f1face\fP\fR text\fP

Because only the immediately previous font is remembered, you have to
restore the previous font after each change or you can lose it. The same
is true of .ps and .vs when used without an argument.

There are other fonts available besides the standard set, although you
can still use only four at any given time. The command .fp tells troft'
what fonts are physically mounted on the typesetter:

.fp 3 H

says that the Helvetica font is mounted on position 3. If you do not plan
to use the standard fonts, appropriate .fp commands should appear at
the beginning of your document, before the first text line.

It is possible to make a document relatively independent of the actual
fonts used to print it by using font numbers instead of names; for exam­
ple, \f3 and .ft 3 mean "whatever font is mounted at position 3", and

A troft' Tutorial 1-5

SECTION 2 Formatters

thus work for any setting. Normal settings are roman font on 1, italic on
2, bold on 3, and special on 4.

Special characters have four-character names beginning with \ (, and they
may be inserted anywhere. For example,

is produced by

\(14

In particular, Greek letters are all of the form \(*-, where - is the
English name of the Greek letter you wish to print. Upper-case Greek
letters are specified by capitalizing the first letter of the English name.
Thus to get

E(a:x,B) -4 00

in bare troif, we have to type

\(*S(\(*a\(mu\(*b) \(-> \(if

There is a complete list of these special character names at the end of
this chapter.

In eqn, the same effect can be achieved with the input

SIGMA (alpha times beta) -> inf

which is less concise, but clearer to the uninitiated.

Notice that each four-character name is a single character as far as troff
is concerned; the "translate" command

.tr \(mi \(em

is perfectly clear, meaning

.tr --

that is, to translate a minus sign (-) in the input file to a one em dash (
-) upon output.

Some characters are automatically translated into others: grave and
acute accents become opening and closing single quotes. The combina­
tion of " ... " is generally preferable to the double quotes" ... ". Simi­
larly, a typed minus sign becomes a hyphen -. To print an explicit -
sign, use \-. To get a backslash printed, use \e.

1.4 INDENTATION AND LINE LENGTH

Troif is initialized to a line length of 6.5 inches. To reset the line
length, use the .ll command, as in

.11 6i

As with .sp, the actual length can be specified in several ways; inches are

1-6 A troff Tutorial

(~

\.

o

o

o

SECTION 2 Formatters

probably the most familiar, though people who set type often prefer to
specify in picas.

The maximum line length allowed by troft' is 7.5 inches. To use the full
width, you will have to reset the default physical left margin ("page
offset"), which is normally slightly less than one inch from the left edge
of the paper. This is done with the .po command .

. po 0

sets the offset as far to the left as it will go.

The indent command .in indents the left margin a specified amount from
the page offset. If we use .in to expand (indent) the left margin and .11
to "expand" the right margin (by reducing the line length), we can set off
blocks of text:

.in Ii

.11 -1.0i
Pater noster
• 11 +1.0i
.in -1.0i

will create a block that looks like this:

Pater noster qui est in caelis sanctificetur
nomen tuum; adveniat regnum tuum; fiat
voluntas tua, sicut in caelo, et in terra
Amen

Notice the use of "+" and "-" to specify the amount of change. These
change the previous setting by the specified amount, rather than just
overriding it. The distinction is quite important: .11 +Ii makes lines one
inch longer; .11 Ii makes them one inch long.

With .in, .ll and .po, the previous value is used if no argument is
specified.

To indent a single line, use the "temporary indent" command .ti. For
example, one way to make an indented paragraph would be to precede
the paragraph text with the following request .

. ti 3

Three of what? The default unit for .ti, as for most horizontally oriented
commands .11,(.in, .po), is ems. An em is roughly the width of the
letter "m" in the current point size. (Strictly speaking, an em in size p is
p points wide.)Although inches are usually clearer than ems to people
who don't set type for a living, ems have a place; they are a measure of
size that is proportional to the current point size. If you want to make
text that keeps its proportions regardless of point size, you should use
ems for all dimensions. Ems can be specified as scale factors directly, as
in .ti 2.5m.

A troft' Tutorial 1-7

SECTION 2 Formatters

Lines can also be indented negatively if the indent is already positive:

.ti -O.7i

causes the next line to be moved back seven-tenths of an inch. To make
a decorative initial capital, we indent the whole paragraph, then move
the letter "P" back with a .ti command:

P ater noster qui est in caelis sanctificetur nomen
tuum; adveniat regnum tuum; fiat voluntas tua, sicut

in caelo, et in terra. ... Amen.

Of course, there is also some work needed to make the "P" bigger (just a
"\s24P\sO"), and to move it down from its normal position (see the sec­
tion on local motions).

1.5 TABS

Tabs (the Ascn "horizontal tab" character) can be used to produce out­
put in columns, or to set the horizontal position of output. Most people
use tabs only in unfilled text. Troil' tab stops are set by default every
half inch from the current indent. Tab settings can be changed by the
. ta command. The troil' request line below sets a tab stop every inch .

. ta Ii 2i 3i 4i 5i 6i

These tab stops are left-justified, like tab stops on a typewriter. This
can make for tedious going if you have to line up columns of right­
justified numbers in a table. The troff pre-processor tbl, described in
Chapter 7 of this section, allows much more detailed specification of
tabular layouts. Use it whenever you have large or complex tables to for­
mat.

For a handful of numeric columns, you can do it this way. Precede every
number by enough blanks to make the number line up when typed .

. nf

.ta Ii 2i 3i
1 tab 2 tab 3

40 tab 50 tab 60
700 tab 800 tab gOO
.fi

Then, change each leading blank into the string \0. This is an "escape"
character that does not print, but that has the same width as a digit.
When printed, the input in the example above will produce

123
40 50 60

700 800 gOO

It is also possible to fill up tab bed-over space with some character other
than blanks. To specify a different "tab replacement character," use the
.tc command (\(ru is "_"):

1-8 A troff Tutorial

\,

o

o

C)

o

SECTION 2 Formatters

.ta 1.5i 2.5i

.tc \{ru
Name tab Age tab

produces

Name __________ ~Age-------

To reset the tab replacement character to a blank, use. tc with no argu­
ment. (Lines can also be drawn with the \1 command, described in a
later part of this chapter.)

1.6 LOCAL MOTIONS, LINES, AND CHARACTERS

Troil' provides a host of commands for placing characters of any size at
any place. You can use them to draw special characters or to tune your
output for a particular appearance. Most of these commands are
straightforward, but they can be cryptic to read and tough to type
correctly.

Although the eqn preprocessor described in Chapter 6 is the preferred
tool for typesetting mathematical equations, you may elect to produce
such rudimentary notations as subscripts and superscripts "by hand,"
using troff's half-line local motions: \ u and \d. To go back up the page
half a point-size, insert a \ u at the desired place; to go down, insert a \ d.
\ u(and \ d should always be used in pairs, as explained below). Thus
the input

Area = \(*pr\u2\d

produces the following output.

Area = 1Tr2

To make the "2" smaller, bracket it with \s-2 ••• \sO. Since \u and \d
refer to the current point size, be sure to put both requests either inside
or outside the size changes. If one is inside and one outside, you will get
an unbalanced vertical motion.

Sometimes, the space given by \u and \d isn't the right amount. The
\ v command can be used to request an arbitrary amount of vertical
motion. The in-line command

\ v'{ amount),

causes motion up or down the page by the amount specified in
"{ amount)". For example, to move the "P" down, we used

.in +O.6i (move paragraph in)

.11 -O.3i (shorten lines)

.ti -O.3i (move P back)
\ v'2'\s24\sO\ v'-2'ater noster qui est
in caelis ...

A minus sign causes upward motion, while no sign or a plus sign means

A troil' Tutorial 1-9

SECTION 2 Formatters

down the page. Thus, \ v' -2' causes an upward vertical motion of two
line spaces.

There are many other ways to specify the amount of motion:

\v'O.li'
\v'3p'
\v'-O.5m'

are all legal, as are several other constructs. Notice that the scale
specifier i or p or m goes inside the quotes. Any matching characters
can be used in place of the quotes; this is also true of all other trofl'
requests described in this section.

Since trofl' does not take within-the-line vertical motions into account
when figuring out where it is on the page, output lines can have unex­
pected positions if the left and right ends aren't at the same vertical
position. Thus, \v, like \u and \d, should always balance upward verti­
cal motion in a line with the same amount in the downward direction.

Arbitrary horizontal motions are also available: \h is analogous to \ v,
except that the default scale factor is ems instead of line spaces. As an
example,

\h'-O.li'

causes a backward motion of a tenth of an inch. As a practical matter,
consider printing the mathematical symbol "> >". The default spacing
is too wide, so eqn replaces this by

>\h'-O.3m'>

to produce > > .

Frequently \h is used with the "width function" \ w to generate motions
equal to the width of some character string. The construction

\w'string'

is a number equal to the width of "string" in machine units (1/432 inch).
All troil' computations are ultimately done in these units. To move hor­
izontally the width of an "x" , we can say

\h'\w'x'u'

As we mentioned above, the default scale factor for all horizontal dimen­
sions is m (ems), so here we must have the u to specify machine units.
Otherwise the motion produced will be far too large. Trofl' is quite
happy with the nested quotes so long as you don't leave any out.

As a live example of this kind of construction, all of the command names
in the text, like .sp, were done by overstriking with a slight offset. The
commands for .sp are

.sp \h'-\ w' .sp'u'\h'l u' .sp

That is, put out" .sp", move left by the width of ".sp" , move right 1

1-10 A trofl' Tutorial

o

o

o

o

SECTION 2 Formatters

unit, and print" .sp" again.

There are also several special-purpose trofl' commands for local motion.
We have already seen \0, which is an unpaddable white space of the
same width as a digit. "Unpaddable" means that it will never be
widened or split across a line by troff's justification and filling process.
There is also \ (backslash space), which is an unpaddable character the
width of a space, \1, which is half that width, \ "', which is one quarter of
the width of a space, and \&, which has zero width. (This last one is
useful, for example, in entering a text line which would otherwise begin
with a "." and, therefore, look to trofl' like a request. It's a construction
we used a lot in writing this chapter.)

The command \0, used like

\o'set of characters'

causes (up to 9) characters to be overstruck, centered on the widest.
This is nice for accents, as in:

syst \ 0" e \ (ga" me t \ 0" e \ (aa" 1\0" e \ (aa" phonique

which makes:

systeme telephonique

The accents are \(ga and \(aa, or \' and \'; remember that each is just
one character to trofl' .

You can make your own overstrikes with another special convention, \z,
the zero-motion command. \zx suppresses the normal horizontal motion
after printing the single character x, so another character can be laid on
top of it. Although sizes can be changed within \0, it centers the charac­
ters on the widest, and there can be no horizontal or vertical motions, so
\z may be the only way to get what you want. As an example, an
extra-heavy semicolon that looks like

; instead of ; or ;

can be constructed with a big comma and a big period above it:

\s+6\z, \ v' -O.25m'. \ v'O.25m'\sO

A more ornate overstrike is given by the bracketing function \ b, which
piles up characters vertically, centered on the current baseline. Thus we
can get big brackets, constructing them with piled-up smaller pieces:

{ [x]}
by typing in this:

.sp
\b' \(It\(lk\(lb' \b' \(lc\(lf' x \b' \(rc\(rf' \b' \(rt\(rk\(rb'

A trofl' Tutorial 1-11

SECTION 2 Formatters

Troft' also provides a convenient facility for drawing horizontal and vert­
ical lines of arbitrary length with arbitrary characters. The input

\1' Ii'

draws a line one inch long, like this: . The length can be
followed by the character to use if the _ isn't appropriate; \1' O.5i.'
draws a half-inch line of dots: The construction \L is entirely
analogous, except that it draws a vertical line instead of a horizontal one.

1.7· STRINGS

Obviously, if a document contains a large number of occurrences of an
acute accent over the letter "e" , typing \0" e \' " for each e would be a .
nuisance.

Fortunately, troff provides a way for you to store an arbitrary collection
of text in a "string", and thereafter use the string name as a shorthand
for its contents. Strings are one of several troft' mechanisms whose judi­
cious use lets you type a document with less effort and organize it so that
extensive format changes can be made with a few editing changes.

When troft' processes your input file, a reference to a pre-defined string is
replaced by the appropriate text. Strings are defined with the command
.ds. The line:

.ds e \o"e\' "

defines the string e to have the value \o"e\' "
String names may be either one or two characters long, and are called by
\ *x for one character names or \ *(xy for two character names. Thus to
get telephone, given the definition of the string e as above, we can say
t \ *el\ *ephone.

If a string must begin with blanks, define it as

.ds xx " text

The double quote signals the beginning of the definition. There is no
trailing quote, since the end of the line terminates the string.

A string may actually be several lines long; if troft' encounters a \ at the
end of any line, it throws the \ away and appends the next line to the
current one. So you can make a long string simply by ending each line
but the last with a backslash:

.ds xx this \
is a very \
long string

Strings may be defined in terms of other strings, or even in terms of
themselves. We will discuss some of these possibilities later.

1-12 A troft' Tutorial

,
'-

o

o

o

o

o

SECTION 2 Formatters

1.8 INTRODUCTION TO MACROS

In its simplest form, a macro is just a shorthand notation quite similar to
a string. Suppose you want every paragraph to star~ in exactly the same
way - with a space and a temporary indent of two ems:

.sp

.ti +2m

To save typing, you might like to collapse these into one shorthand line,
a troff "request" like

.PP

that would be treated by troff exactly as

.sp

.ti +2m

.PP is called a macro. The way you tell troff what .PP means is to
define it with the .de command:

.de PP

.sp

.ti +2m

The first line names the macro (we used .PP for "paragraph," and
uppercase so it wouldn't conflict with any name that troff might already
know about). The last line •• " marks the end of the definition. In
between is a collection of requests. These are inserted whenever troff
sees the macro called

.PP

A macro can contain any combination of text and formatting commands.

The definition of .PP has to precede its first use; undefined macros are
simply ignored. Names are restricted to one or two characters.

Using macros for commonly occurring sequences of commands is critically
important. Not only does it save typing, but it makes later changes
much easier. Suppose you decide that the paragraph indent is too small,
the vertical space is much too big, and Roman font should be forced.
Instead of changing the whole document, you need only change the
definition of .PP to something like

.de PP \" paragraph macro

.sp 2p

.ti +3m

.ft R

and the change takes effect everywhere you used .PP.

A troff Tutorial 1-13

SECTION 2 Formatters

The comment delimiter \" is a troft' request that causes the rest of the
line to be ignored. We use it here to add comments to the macro
definition (a wise idea once definitions get complicated, and essential to
ensure comprehension by other users.)

As another example of macros, consider these two which start and end a
block of offset, unfilled text, like most of the examples in this paper:

.de BS \" start indented block

.sp

.nf

.in +O.3i

.de BE \" end indented block

.sp

.fi

.in -O.3i

Now we can surround text like

Copy to
John Doe
Richard Roberts
Stanley Smith

by the commands .BS and .BE, and it will come out as it did above.
Notice that we indented by .in +O.3i instead of .in O.3i. This way we
can nest our uses of .BS and .BE to get blocks within blocks.

1.9 TITLES, PAGES, AND NUMBERING

Suppose you want a title at the top of each page, saying simply:

left top center top right top

To do this right, you need to say what the actual title is (easy); when to
print it (easy enough); and what to do at and around the title line
(harder). Taking these in reverse order, first we define a macro .NP (for
"new page") to process titles and the like at the end of one page and the
beginning of the next:

.de NP
, bp
, sp O.5i
.tl 'left top'center top'right top'
, sp O.3i

To make sure we're at the top of a page, we issue a "begin page" com­
mand' bp, which causes a skip to top-of-page (we'll explain the'
shortly). Then we space down half an inch, print the title (the use of .tl
should be self explanatory; later we will discuss parameterizing the

1-14 A troft' Tutorial

o

o

o

SECTION 2 Formatters

titles), space another 0.3 inches, and we're done.

To ask for .NP at the bottom of each page, we have to say something
like "when the text is within an inch of the bottom of the page, start the
processing for a new page." This is done with a "when" command .wh:

.wh -Ii NP

(No"." is used before NP; this is simply the name of a macro, not a
macro call.)The minus sign means "measure up from the bottom of the
page", so "-li" means "one inch from the bottom" .

The .wh command appears in the input outside the definition of .NP;
typically the input would be

.de NP

.wh -Ii NP

Now what happens? As text is actually being output, troff keeps track
of its vertical position on the page, and after a line is printed within one
inch from the bottom, the .NP macro is activated. (In the jargon, the
.wh command sets a trap at the specified place, which is "sprung" when
that point is passed.) The .NP macro causes a skip to the top of the
next page (that's what the' bp was for), then prints the title with the
appropriate margins.

Why' bp and' sp instead of .bp and .sp? The answer is that .sp and
.bp, like several other commands, cause a break to take place. That is,
all the input text collected but not yet printed is flushed out as soon as
possible, and the next input line is guaranteed to start a new line of out­
put. If we had used .sp or .bp in the .NP macro, it would force a break
in the middle of the current output line whenever a new page was
started. The effect would be to print the left-over part of that line at the
top of the page, followed by the next input line on a new output line.
Using' instead of. for a command tells troff that no break is to take
place - the output line currently being filled should not be forced out
before the space or new page.

The following commands cause a break:

. bp . br .ce .fi .nf .sp .in . ti

All others cause no break, regardless of whether you use a. or a' . If
you really need a break, add a .br command at the appropriate place.

In some cases, you may find that if you cross a page boundary in an
unexpected font or size, your titles come out in that size and font instead
of the one you intended. Furthermore, the length of a title is indepen­
dent of the current line length. Titles will come out at the default length
of 6.5 inches unless you change the title length with the .It command.

A troff Tutorial 1-15

SECTION 2 Formatters

There are several ways to fix the problems of point sizes and fonts in
titles. For the simplest applications, we can change .NP to set the
proper size and font for the title, then restore the previous values, like
this:

.de NP
, bp
, sp O.5i
.ft R \" set title font to roman
.ps 10 \" and size to 10 point
.It 6i \" and length to 6 inches
.tI 'left'center'right'
.ps \" revert to previous size
.ft P \" and to previous font
, sp 0.3i

This version of .NP does not work if the fields in the • tl command con­
tain size or font changes. To cope with that, troff provides an "environ­
ment" mechanism, which we will discuss in a later section.

1.9.1 Page Numbers

Output page numbers are computed automatically as each page is pro­
duced (starting at 1), but no numbers are printed unless you ask for
them explicitly. To get page numbers printed, include the character %
in the .tl line at the position where you want the number to appear. For
example,

.tI "- % -"

centers the page number inside hyphens. You can set the page number
at any time with either .bp n, which immediately starts a new page
numbered n, or with .pn n, which sets the page number for the next
page but doesn't cause a skip to the new page. Again, .bp +n sets the
page number to n more than its current value; .bp means .bp +1.

1.10 NUMBER REGISTERS AND ARITHMETIC

Troft' has a facility for doing arithmetic, and for defining and using vari­
ables with numeric values, called number registers. Number registers,
like strings and macros, can be useful in setting up a document so it is
easy to change later. And, of course, they serve for any sort of arith­
metic computation.

Like strings, number registers have one- or two-character names. They
are set by the .nr command, and are referenced anywhere by \nx (one
character name) or \n(xy (two character name). '

Troft' maintains many pre-defined number registers, among them % for
the current page number; nl for the current vertical position on the page;
dy, mo and yr for the current day, month, and year; and .s and .f for

1-16 A troff Tutorial

~,
,I
I,

\.... '

o

n "---I

o

o

o

SECTION 2 Formatters

the current size and font. (The font is a number from 1 to 4.) Any of
these can be used in computations like any other register, but some, like
.s and .f, cannot be changed with .nr.

As an example of the use of number registers, in the ms macro package,
most significant parameters are defined in terms of the values of a hand­
ful of number registers. These include the point size for text, the vertical
spacing, and the line and title lengths. To set the point size and vertical
spacing for the following paragraphs, for example, you may say

.nr PS 9

.nr VS 11

The -ms paragraph macro .PP is defined (roughly) as follows:

.de PP

.ps \ \n(PS \" reset size

.vs \ \n(VSp \" spacing

.ft R \" font

.sp O.5v \" half a line

.ti +3m

This sets the font to Roman and the point size and line spacing to what­
ever values are stored in the number registers PS and VS.

Why are there two backslashes? This is the eternal problem of how to
quote a quote. When troil' originally reads the macro definition, it peels
off the first backslash. To ensure that another is left in the definition
w hen the macro is used, we have to put two backslashes in the definition.
If only one backslash is used, troil' will not get the correct message, and
point size and vertical spacing will be unaffected when the macro is
invoked.

Protecting by an extra layer of backslashes is only needed for \n, \ *, \$
(which we haven't come to yet), and \ itself. Things like \s, \f, \h, \v,
and so on do not need an extra backslash, since they are converted by
troil' to an internal code immediately upon being seen.

Arithmetic expressions can appear anywhere that a number is expected.
As a trivial example,

.nr PS \ \n(PS-2

decrements PS by 2. Expressions can use the arithmetic operators +, -,
*, /, % (mod), the relational operators >, >=, <, <=, =, and !=
(not equal), and parentheses.

Although the arithmetic we have done so far has been straightforward,
things can get somewhat tricky. First, number registers hold only
integers. Troft' arithmetic uses truncating integer division. Second, in
the absence of parentheses, evaluation is done left-to-right without any
operator precedence (including relational operators). For example,

A troff Tutorial 1-17

SECTION 2 Formatters

7*-4+3/13

becomes "-1". Number registers can occur anywhere in an expression,
and so can scale indicators like p, i, m, and so on (but no spaces).
Although integer division causes truncation, each number and its scale
indicator is converted to machine units (1/432 inch) before any arith­
metic is done, so li/2u evaluates to O.5i correctly.

The scale indicator u often has to appear when you wouldn't expect it -
in particular, when arithmetic is being done in a context that implies
horizontal or vertical dimensions. For example,

.11 7/2i

would seem to indicate a line length of 3.5 inches. But since the default
units for horizontal parameters like .Il are ems, the above expression is
read as "7 ems /2 inches", which when translated into machine units,
becomes zero. A change to

.11 7i/2

is still no good; the "2" is "2 ems" , so "7i/2" is small, although not zero.
You must use

.11 7i/2u

So again, the safest practice is to attach a scale indicator to all numbers,
even constants.

For arithmetic done within a .nr command, there is no implication of
horizontal or vertical dimension, so the default units are "units", and
7i/2 and 7i/2u mean the same thing. Thus

.nr 11 7i/2

.11 \ \n(llu

does just what you want, so long as you don't forget the u on the .Il
command.

1.11 MACROS WITH ARGUMENTS

Troff allows you to define macros that can change from one use to the
next according to parameters supplied as arguments to the macro. To
make this work, you need two things: first, when you define the macro,
you have to indicate that some parts of it will be provided as arguments
w hen the macro is called. Then, when the macro is called, you have to
provide actual arguments to be plugged into the definition.

Let us illustrate by defining a macro .SM that will print its argument
two point~ smaller than the surrounding text. That is, the macro call

.8M TROFF

will produce TROFF

1-18 A troff Tutorial

c

o

o

o

o

SECTION 2 Formatters

The definition of .8M is

.de SM
\s-2\ \$1 \s+2

Within a macro definition, the symbol \ \$n refers to the nth argument
that the macro was called with. Thus \\$1 is the string to be placed in
a smaller point size when .8M is called.

As a slightly more complicated version, the following definition of .8M
permits optional second and third arguments that will be printed in the
normal size:

.de SM
\\$3\s-2\\$1\s+2\\$2

Arguments not provided when the macro is called are treated as empty,
so

.SM TROFF),

produces TROFF), while

.SM TROFF). (

produces (TROFF). It is convenient to reverse the order of arguments
because trailing punctuation is much more common than leading.

The number of arguments that a macro was called with is available in
number register .$.

The following macro .BD is the one used to make the "bold roman" we
have been using for troff request names in text. It combines horizontal
motions, width computations, and argument rearrangement.

.de BD
\&\ \$3\f1 \ \$1 \h'-\w'\ \$1'u+1u'\ \$1 \fP\ \$2

As we previously mentioned, the \h and \ w need no extra backslash.
The \& is there in case the argument begins with a period.

Two backslashes are needed with the \ \ $n commands, though, to protect
one of them when the macro is being defined. Perhaps a second example
will make this clearer. Consider a macro called .8H which might be used
to produce section headings rather like those in this chapter, with the
sections numbered automatically, and the title in bold in a smaller size.
The use is

.SH "Section title ... "

(If an argument to a macro is to contain blanks, it must be surrounded
by double quotes, unlike a string, where only one leading quote is permit­
ted.)

A troff Tutorial 1-19

SECTION 2

Here is the definition of the .SH macro:

.nr SH 0 \" initialize section number

.de SH

.sp 0.3i

.ft B

.nr SH \ \n(SH+ 1 \" increment number

.ps \ \n(PS-1 \" decrease PS
\ \n(SH. \\$1 \" number. title
.ps \ \n(PS \" restore PS
.sp 0.3i
.ft R

Formatters

The section number is kept in number register SH, which is incremented
each time just before it is used.

Note: A number register may have the same name as a macro. A
string may not.

We used \ \n(SH instead of \n(SH and \ \n(PS instead of \n(PS. If we
had used \n(SH, we would get the value of the register at the time the
macro was defined, not at the time it was used. Similarly, by using
\ \n(PS, we get the point size at the time the macro is called.

As an example that does not involve numbers, recall our .NP macro
which had a

.tl 'left'center'right'

We could make these into parameters by using instead

.tl '\ \ *(LT'\ \ *(CT'\ \ *(RT'

so the title comes from three strings called LT, CT, and RT. If these are
empty, then the title will be a blank line. Normally CT would be set
with something like

.ds CT - %-

to give just the page number between hyphens (as on the top of this
page), but a user could supply private definitions for any of the strings.

1.12 CONDITIONALS

Suppose you want the .SH macro to leave two extra inches of space just
before Section 1, but nowhere else. The cleanest way to do that is to
test inside the .SH macro whether the section number is 1, and add some
space if it is. The .if command provides a conditional test that we can
add just before the heading line is output:

.if \ \n(SH=l .sp 2i \" first section only

1-20 A troil' Tutorial

'-"

"""" "

(~

\ .. '

o

o

o

~\

U

o

SECTION 2 Formatters

The condition after the .if can be any arithmetic or logical expression. If
the condition is logically true, or arithmetically greater than zero, then
the rest of the line is treated as if it were text - here it is a command.
If the condition is false, or zero or negative, the rest of the line is
skipped.

It is possible to do more than one command if a condition is true. Sup­
pose several operations are to be done before Section 1. One possibility
is to define a macro .S1 and invoke it if we are about to do Section 1 (as
determined by an .if) .

. de S1
--- processing for Section 1 ---

.de SH

.if \ \n(SH=1 .S1

An alternate way is to use the extended form of the .if, like this:

.if \ \n(SH=1 \ {--- processing
for Section 1 ----\}

The braces \ { and \} must occur in the positions shown or you will get
unexpected extra lines in your output. Trofl' also provides an "if-else"
construction, which is treated in more detail in Chapter 2 of this section.

A condition can be negated by preceding it with !; we get the same effect
as above (but less clearly) by using

.if !\ \n(SH> 1 .S1

There are a handful of other conditions that can be tested with .if. For
example, is the current page even or odd?

.if e .tl "even page title"

.if 0 • tl "odd page title"

gives facing pages different titles when used inside an appropriate new
page macro.

Two other conditions are t and n, which tell you whether the formatter
is trofl' or nrofl' .

.if t troff stuff . . .

. if n nroff stuff ...

Finally, string comparisons may be made in an .if:

.if 'string1 'string2' stuff

does "stuff" if stringl is the same as string2. The character separating
the strings can be anything reasonable that is not contained in either
string. The strings themselves can reference strings with \ *, arguments

A trofl' Tutorial 1-21

SECTION 2 Formatters

with \$, and so on.

1.13 ENVIRONMENTS

As we mentioned, there is a potential problem when going across a page
boundary: parameters like size and font for a page title may well be
different from those in effect in the text when the page boundary occurs.
Troff provides a very general way to deal with this and similar situa­
tions. There are three "environments", each of which has independently
settable versions of many of the parameters associated with processing,
including size, font, line and title lengths, fill/no-fill mode, tab stops, and
even partially collected lines. Thus, the titling problem may be readily
solved by processing the main text in one environment and titles in a
separate one with its own suitable parameters.

The command .ev n shifts to environment n; n must be 0, 1 or 2. The
command .ev with no argument returns to the previous environment.
Environment names are maintained in a stack, so calls for different
environments may be nested and unwound consistently.

Suppose we say that the main text is processed in environment 0, which
is where troff begins by default. Then we can modify the new page
macro .NP to process titles in environment 1 like this:

.de NP

.ev 1 \" shift to new environment

.It 6i \" set parameters here

.ft R

.ps 10

... any other processing ...

. ev \" return to previous environment

It is also possible to initialize the parameters for an environment outside
the .NP macro, but the version shown keeps all the processing in one
place, making it easier to understand and change.

1.14 DIVERSIONS

There are numerous occasions in page layout when it is necessary to store
some text for a period of time without actually printing it. Footnotes are
the most obvious example: the text of the footnote usually appears in the
input well before the place on the page where it is to be printed is
reached. In fact, the place where it is output normally depends on how
big it is, which implies that there must be a way to process the footnote
at least enough to decide its size without printing it.

Troff provides a mechanism called a diversion for doing this processing.
Any part of the output may be diverted into a macro instead of being
printed, and then at some convenient time, the macro may be put back
into the input.

1-22 A troff Tutorial

o

o

o

o

o

SECTION 2 Formatters

The command .di xy begins a diversion; all subsequent output is col­
lected into the macro xy until the command .di with no arguments is
encountered. This terminates the diversion. The processed text is avail­
able at any time thereafter, simply by giving the command

.xy

The vertical size of the last finished diversion is contained in the built-in
number register dn.

As a simple example, suppose we want to implement a "keep-release"
operation, so that text between the commands .KS and .KE will not be
split across a page boundary (as for a figure or table). Clearly, when a
.KS is encountered, we have to begin diverting the output so we can find
out how big it is. Then when a .KE is seen, we decide whether the
diverted text will fit on the current page, and print it either there if it
fits, or at the top of the next page if it doesn't. So:

.de KS \" start keep

.br \" start fresh line

.ev 1 \" collect in new environment

.fi \" make it filled text

.di XX \" collect in XX

.de KE

.br

.di

.if

.nf

.XX

.ev

\" end keep
\" get last partial line
\" end diversion
\ \n(dn>=\ \n(.t .bp \" bp if doesn't fit
\" bring it back in no-fill
\" text
\" return to normal environment

Recall that number register nl holds the current position on the output
page. Since output was being diverted, this remains at its value when
the diversion started. dn is the amount of text in the diversion; .t
(another built-in register) is the distance to the next trap, which we
assume is at the bottom margin of the page. If the diversion is large
enough to go past the trap, the .if is satisfied, and a • bp is issued. In
either case, the diverted output is then brought back with .XX. It is
essential to bring it back in no-fill mode so troff will do no further pro­
cessing on it.

This is not the most general keep-release, nor is it robust in the face of
all conceivable inputs, but it would require more space than we have here
to describe a more general mechanism. The -IDS, -me, and -mm macro
packages all have keep mechanisms. They are described in chapters 3, 4,
and 5 respectively.

A troft' Tutorial 1-23

C-"'"
-_/

(~
I

\

o

o

o

o

G

SECTION 2 Formatters

Chapter 2: The trofl' Reference Manual

2.1 INTRODUCTION

Nroft' and troft' are text formatting programs. Nroft' formats text for a
variety of dot-matrix and letter-quality printers (as well as for DM win­
dows and most CRTs), and troft' does the same thing for the Graphic Sys­
tems CAT phototypesetter. Both nroft' and troff accept lines of text
interspersed with lines of format control information and output format­
ted text, usually for a specific output device.

Note: This chapter is a reference manual for nroft' and troft'. Of
necessity, it is technical in nature, and may tell you a good
deal more than you really need to know. For a more meas­
ured introduction to the subject, see Chapter 1 of this section.

Nroft' and troft' have similar input file requirements. It is almost always
possible to prepare input acceptable to both. Conditional input requests
let you embed input expressly destined for either program. When we
refer to troft' in this chapter, we mean "troff and/or nroff." Where a
feature is unique to one or the other we will say so. Otherwise, you may
safely assume that they behave identically.

2.1.1 Usage

The following line is the model for lines that invoke nroft' from either a
Bourne or a C shell.

nroft' options file(s)

Similarly, the following line is the model for lines that invoke troft'.

troft' options filers)

where options represents any of a number of optional arguments and
file(s) represents the file (or list of files separated by spaces) containing
the document(s) to be formatted. An argument consisting of a single
minus (-) is taken to be a file name corresponding to the standard
input. If no file names are given, input is taken from the standard input.
The options must appear before the file(s), but may appear in any order.

Option Effect

-olist Print only the pages whose page numbers appear in the list
of numbers and/or number ranges separated by commas.
A number range has the form N-M and means pages N
through M. An initial -N means from the beginning to
page N; and a final N- means from N to the end.

The nroff/troff Reference Manual 2-1

SECTION 2

-nN

-sN

-mname

-raN

-i

-q

Nroil' Only

Option

-Tname

-e

Troil' Only

Option

-t

-f

-w

-b

-a

-pN

2-2

Formatters

Num ber first generated page N.

Stop every N pages. Nroil' will halt every N pages (default
N 1) to allow paper loading or changing, and will resume
upon receipt of a newline. Troil' will stop the CAT photo­
typesetter every N pages, produce a trailer to allow chang­
ing cassettes, and will resume after the phototypesetter's
START button is pressed.

Prepends the macro file

/usr /lib /tmac.name

to the input files.

Num ber register a (one-character) is set to N. May be
repeated to set multiple a's.

Read standard input after the end of the specified filers).

Invoke the simultaneous input-output mode of the .rd
request.

Effect

Specifies the name of the output terminal type. Must be a
type included in the directory /usr/lib/tab. See your Sys­
tem Administrator for a list of the terminal types available
at your installation and their names.

Produce equally-spaced words in adjusted lines, using full
terminal resolution.

Effect

Direct output to standard output instead of to the· photo­
typesetter.

Refrain from feeding out paper and stopping photo­
typesetter at the end of the run.

Wait until phototypesetter is available if it is currently
busy.

Report whether the phototypesetter is busy or available.
Do not do text processing.

Send a printable AScn approximation of the results to stan­
dard output.

Print all characters in point size N while retaining all
prescribed spacings and motions, to reduce phototypesetter
elapsed time.

The nroil'/troil' Reference Manual

I~

o

o

o

o

SECTION 2 Formatters

Each option is invoked as a separate argument; for example,

nroff -04,8-10 -T300S -mm filel file2

requests formatting of pages 4, 8, 9, and 10 of a document contained in
the files named filel and file2, specifies the output terminal as a DASI-
300S, and invokes the macro package tmac. m, better known as the -mm
macro package (see Chapter 5).

Various pre- and post-processors are available for use with nroff and
troff. These include the equation preprocessors eqn and neqn, the table
formatter tbl, and the refer bibliography macros. ChapterS 6 and 7 of
this section include more information about pre-processors. Normally,
you connect troff with these pre-, and post-processors by means of pipes.
For example, in

tbl files I eqn I troff -t options

the first I indicates the piping of tbl's output to eqn's input. The
second indicates the piping of output to troiT's input.

2.1.2 Input File Format

A troff or nroff input file consists of text lines, which are destined to be
printed, interspersed with formatter requests, which set parameters or
otherwise control subsequent processing. Formatter requests normally
begin with a • (period) or, in some cases, a ' (acute accent). The request
character ' suppresses the break function induced by certain requests. A
break usually forces output of any partially collected input line - some­
thing that you may need to avoid when defining a macro.

The request character is followed by a one- or two-character name that
specifies either a basic request (one of the ones defined in this chapter) or
a user-defined or macro that may invoke many requests. In general, we
will try to differentiate between requests, which are defined in the trofi'
program itself and cannot be altered by the user, and macros, which are
defined by the user or obtained from a predefined macro package such as
-me or -mm. The request character may be separated from the
request/macro name by zero or more spaces and/or tabs. Request or
macro names must be followed by either a space or a newline. Lines that
begin with a request character but include an unrecognized name are
ignored.

Various special functions may be introduced anywhere in the input by
means of an escape character, normally the backslash.

\
For example, the function \nR causes the interpolation of the contents
of the number register R. Number registers are discussed in detail in a
later section.

The nrofi'/troff Reference Manual 2-3

SECTION 2 Formatters

2.1.3 Output Device Resolution

Troff resolves horizontal distances to 1/432'd inch. This number is
derived from the CAT phototypesetter which has a horizontal resolution
of 1/432 inch and a vertical resolution of 1/144 inch. nroff resolves to
240 units/inch, corresponding to the lowest common multiple of the hor­
izontal and vertical resolutions of various printing terminals. Troff
rounds horizontal/vertical numerical parameter input to the actual reso­
lution of the CAT. Nroff similarly rounds numerical input to the actual
resolution of the output device indicated by the - T option (default
Model 37 Teletype).

2.1.4 Numerical Parameter Input

Troff accepts numerical input with the appended scale indicators shown
in the following table, where S is the current type size in points, V is the
current vertical line spacing in basic units, and C is a nominal character
width in basic units.

Scale Number of basic units
Indicator Meaning troft" nroft"

i Inch 432 240
e Centimeter 432 X 50/127 240X50/127
P Pica = 1/6 inch 72 240/6
m Em = S point.s 6XS 0
n En = Em/2 3XS 0, same as Em
p Point = 1/72 inch 6 240/72
u Basic unit 1 1
v Vertical line space V V

none Default, see below

In nroft', the em and the en are equal fixed-width character-sized incre­
ments. Common values are 1/10 and 1/12 inch. Actual character
widths in nroft' need not be all the same and constructed characters such
as - > (~) are often extra wide.

The default scaling is ems for the horizontally-oriented requests and
functions ll, in, ti, ta, It, po, mc, \h, and \1; Vs for the vertically­
oriented requests and functions pI, wh, ch, dt, sp, SV, ne, rt, \v, \x,
and \L; p for the vs request; and u for the requests nr, if, and ie. All
other requests ignore any scale indicators.

When a number register containing an appropriately scaled number is
interpolated to provide numerical input, the unit scale indicator u may
need to be appended to prevent an additional inappropriate default scal­
ing. The number may be specified in decimal-fraction form but the
parameter finally stored is rounded to an integer number of basic units.

The absolute position indicator - (tilde) may be prepended to a number
N to generate the distance to the vertical or horizontal place N. For
vertically-oriented requests and functions, - N becomes the distance in
basic units from the current vertical place on the page or in a diversion

2-4 The nroif/troif Reference Manual

/-,
(
\, .'

o

o

o

SECTION 2 Formatters

to the the vertical place N. For all other requests and functions, - N
becomes the distance from the current horizontal place on the input line
to the horizontal place N. For example,

.sp - 3.2c

will space in the required direction to a point 3.2 centimeters from the
top of the page.

2.1.5 Numerical Expressions

Wherever numerical input is expected, you may use an expression involv­
ing parentheses, the arithmetic operators +, -, /, *, % (mod), and the
logical operators <, >, < =, > =, = (or ==), & (and), and : (or).
Except where controlled by parentheses, these expressions are evaluated
left-to-right. There is no operator precedence. In the case of certain
requests, an initial + or - is stripped and interpreted as an increment or
decrement indicator respectively. In the presence of default scaling, the
desired scale indicator must be attached to every number in an expres­
sion for which the desired and default scaling differ. For example, if the
number register x contains 2 and the current point size is 10, then

.ll (4.25i+ \nxP+3)/2u

will set the line length to half the sum of 4.25 inches + 2 picas + 30
points.

2.1.6 Notational Conventions

In this chapter, we indicate numerical parameters in two ways: ±N
means that the argument may take the forms N, + N, or -N and that the
corresponding effect is to set the affected parameter to N, to increment it
by N, or to decrement it by N respectively. Plain N means that an ini­
tial algebraic sign is not an increment indicator, but merely the sign of
N. Generally, unreasonable numerical input is either ignored or trun­
cated to a reasonable value. For example, most requests expect to set
parameters to non-negative values. Exceptions are sp, wh, ch, nr, and
if. The requests ps, ft, po, vs, Is, ll, in, and It restore the previous
parameter value in the absence of an argument.

Single-character arguments are indicated by single lowercase letters.
One- or two-character arguments are indicated by a pair of lower case
letters. Character string arguments are indicated by multi-character
mnemonics.

2.2 FONT AND CHARACTER SIZE CONTROL

2.2.1 Character Set

The troiT character set consists of a standard "Times" family character
set plus a Special Mathematical character set. Each set includes 102
characters. There is a table of these character sets at the end of this
chapter. All ASCII characters are included, with some on the Special

The nroiT/troiT Reference Manual 2-5

SECTION 2 Formatters

Font. With three exceptions, the ASCll characters are input as them­
selves, and non-ASCII characters are input in the form \(xx where xx is a
two-character name given in the table at the end of this chapter. The
three ASCll exceptions are mapped as follows:

ASCII Input Printed by troff
Character Name Character Name

,
acute accent

,
close quote ,

grave accent
,

open quote
- minus - hyphen

The characters', ' , and - may be input by \', \' , and \- respectively
or by using the names detailed in the table at the end of this chapter.
The ASCll characters @, #, ", " ' , <, >, \, {, }, - , ", and _ exist only
on the Special Font and are printed as a I-em space if that font is not
mounted.

N rofT understands the entire trofT character set, but can usually print
only ASCll characters, those additional characters available on the output
device, characters that can be constructed by overstriking or other
means, and those that can reasonably be mapped into other printable
characters. The exact behavior is determined by a driving table prepared
for each device. The following characters

print as themselves.

2.2.2 Fonts

The default mounted fonts are Times Roman (R), Times Italic (I), Times
Bold (B), and the Special Mathematical Font (S) at font positions 1, 2, 3,
and 4 respectively. The current font, initially Roman, may be changed
(among the mounted fonts) by use of the ft request, or by imbedding at
any desired point either \fx, \f(xx, or \fN where x and xx are the name
of a mounted font and N is a numerical font position. It is not necessary
to change to the Special font; characters on that font are handled
automatically. A request for an unmounted font is ignored. Troil' can
be informed that a font is mounted by use of the fp request. See your
System Administrator for a list of the fonts available at your site. In the
subsequent discussion of font-related requests, F represents either a one­
/two-character font name or the numerical font position, 1-4. The
current font is available (as numerical position) in the read-only number
register .f.

2.2.3 Character Size

NrofT ignores type size control. The CAT typesetter (and, hence, trofT)
supports the following character point sizes: 6, 7, 8, 9, 10, 11, 12, 14, 16,
18, 20, 22, 24, 28, and 36. This provides a size range of 1/12 inch to 1/2
inch. The ps request is used to change or restore the point size.

2-6 The nrofT/troil'Reference Manual

o

o

o

C)

o

SECTION 2 Formatters

Alternatively, the point size may be changed by imbedding a \sN in run­
ning text to set the size to N, or a \s±N (1 <N<9) to
increment / decrement the size by N. The request \sO restores the previ­
ous size. If you request a point size that is between two valid sizes, troff
will use the larger of the two. The current size is available in the .s
register.

In this and all similar tables in this chapter, we use the following desig­
nations in the Notes column.

B Request normally causes a break.

D Mode or relevant parameters associated with current diversion
level.

E

o
p

Relevant parameters are a part of the current environment.

Must stay in effect until logical output.

Mode must be still or again in effect at the time of physical
output.

The characters v,p,m,u are default scale indicators; if not specified, scale
indicators are ignored.

Request Initial If No
Form Value Argument Notes Explanation

.ps±N 10 point previous E Point size set to ±N. Alterna­
tively imbed \sN or \s±N. Any
positive size value may be
requested; if invalid, the next
larger valid size will result, with a
maximum of 36. A paired
sequence + N, - N will work
because the previous requested
value is also remembered.

• ssN 12/36 em ignored E

.csFNM off P

The nroff/troff Reference Manual

Ignored in nroff .

Space-character size is set to
N /36 ems. This size is the
minimum word spacing in
adjusted text. Ignored in nroff.

Constant character space (width)
mode is set on for font F (if
mounted); the width of every
character will be taken to be
N/36 ems. If M is absent, the em
is that of the character's point
size; if M is given, the em is M­
points. All affected characters are
centered in this space, including
those with an actual width larger

2-7

SECTION 2

.bdFN off p

• bdSFN off p

. ftF Roman previous E

• fpNF R,I,B,S ignored

2.3 PAGE CONTROL

Formatters

than this space. Special Font
characters occurring while the
current font is F are also so
treated. If N is absent, the mode
is turned off. The mode must be
still or again in effect when the
characters are physically printed.
Ignored in nroft'.

The characters in font F will be
artificially emboldened by print­
ing each one twice, separated by
N -1 basic units. A reasonable
value for N is 3 when the charac­
ter size is in the vicinity of 10
points. If N is missing the embol­
den mode is turned off. The
column heads for this table were
printed with .bdI3. The mode
must be still or again in effect
w hen the characters are physi­
cally printed. Ignored in nroft' .

The characters in the Special
Font will be emboldened when­
ever the current font is F. The
mode must be still or again in
effect when the characters are
physically printed .

Font changed to F. Alterna­
tively, imbed \fF. The font
name P is reserved to mean the
previous font .

Font position. This is a state­
ment that a font named F is
mounted on position N (1-4). It
is a fatal error if F is not known.
The default mounting sequence
assumed by troft' is R, I, B, and S
on positions 1, 2, 3, and 4.

Top and bottom margins are not automatically provided; it is conven­
tional to define two macros and to set traps for them at vertical positions
o (top) and -N (N from the bottom). A pseudo-transition onto the first
page occurs either when the first break occurs or when the first non­
diverted text processing occurs. Arrangements for a trap to occur at the
top of the first page must be completed before this transition. In the

2-8 The nroft'/troft'Reference Manual

o

o

C)

o

SECTION 2 Formatters

following table, references to the current diversion mean that the
mechanism being described works during both ordinary and diverted out­
put (the former considered as the top diversion level).

Request Initial If No
Form Value Argument Notes Explanation

.pl±N 11 in 11 in v Page length set to ±N. The
internal limitation is about 75
inches in troff and about 136
inches in nroff. The current
page length is available in the .p
register.

.bp±N N 1

.pn±N N 1 ignored

.po±N 0; 26/27 i previous

.neN N IV

B,v Begin page. The current page is

v

D,v

ejected and a new page is begun.
If ±N is given, the new page
number will be ±N. The use of
" , " as request character
(instead of " .") suppresses the
break function. Also, see request
ns.

Page number. The next page
(when it occurs) will have the
page number ±N. A pn must
occur before the initial pseudo­
page transition to effect the page
num ber of the first page. The
current page number is in the %
register.

Page offset. Values separated by
";" are for nroff and troff respec­
tively. The current left margin is
set to ±N. The troff initial
value provides about 1 inch of
paper margin including the physi­
cal typesetter margin of 1/27th
inch. In troff the maximum (line
length) + (page offset) is about
7.54 inches. The current page
offset is available in the .0 regis­
ter.

Need N vertical space. If the dis­
tance, D, to the next trap posi­
tion is less than N, a forward
vertical space of size D oCGurs,
which will spring the trap. If no
traps are left the page, D is the
distance to the bottom of the

The nroff/troff Reference Manual 2-9

SECTION 2

• mkR none

.rt±N none

Formatters

page. If D< V, another line could
still be output and spring the
trap. In a diversion, D is the dis­
tance to the diversion trap, if
any, or is very large .

internal D Mark the current vertical place in
an internal register (both associ­
ated with the current diversion
level), or in register R, if given.
See rt request.

internal D,v Return (move up) to a marked
vertical place in the current
diversion. If ±N (w.r.t. current
place) is given, the place is ±N
from the top of the page or diver­
sion or, if N is absent, to a place
marked by a previous mk. Note
that the sp request may be used
in all cases instead of rt by spac­
ing to the absolute place stored in
an explicit register; e. g. using the
sequence .mklR spll\nRu.

2.4 TEXT FILLING AND ADJUSTING

2.4.1 Filling and Adjusting

Normally, words are collected from input text lines and assembled into
an output text line until some word doesn't fit. An attempt is then made
to hyphenate the word in an effort to assemble a part of it into the out­
put line. The spaces between the words on the output line are then
increased to spread out the line to the current line length minus any
current indent.

A word is any string of characters delimited by the space character or
the beginning/end of the input line. Any adjacent pair of words that
must be kept together (neither split across output lines nor spread apart
in the adjustment process) can be tied together by separating them with
the unpaddable space character "\ "(backslash-space). The adjusted
word spacings are uniform in troil'. The minimum interword spacing can
be controlled with the ss request. In nroif, they are normally nonuni­
form because of quantization to character-size spaces; however, the com­
mand line option -e causes uniform spacing with full output device reso­
lution. Filling, adjustment, and hyphenation can all be prevented or
controlled. The text length on the last line output is available in the .n
register, and text baseline position on the page for this line is in the nl
register. The text base-line high-water mark (lowest place) on the
current page is in the .h register.

2-10 The nroif/troif Reference Manual

(-,
'\
'--

o

o

o

o

SECTION 2 Formatters

An input text line ending with., ?, or ! is taken to be the end of a sen- I

tence, and an additional space character is automatically provided during
filling. Multiple inter-word space characters found in the input are
retained, except for trailing spaces. An initial space also causes a break.

When filling is in effect, a \p may be imbedded or attached to a word to
cause a break at the end of the word and have the resulting output line
spread out to fill the current line length.

If you need to begin a text input line with a request character (e.g., a
dot), preface the line with the non-printing, zero-width filler character
\&. You may also achieve the same effect by specifying output transla­
tion of some convenient character into the request character using tr.

2.4.2 Interrupted Text

The copying of a input line in nofill mode can be interrupted by ter­
minating the partial line with a \c (concealed newline). The next input
text line encountered will be considered to be a continuation of the same
line of input text. Similarly, a word within filled text may be interrupted
by terminating the word (and line) with \ c. The next encountered text
will be taken as a continuation of the interrupted word. If the interven­
ing control lines cause a break, any partial line will be forced out along
with any partial word.

Request Initial If No
Form Value Argument Notes Explanation

. br B Break. The filling of the line
currently being collected is
stopped and the line is output
without adjustment. Text lines
beginning with space characters
and empty text lines (blank lines)
also cause a break.

.fi fill Ion

.nr fill Ion

.ade adj. l,r adjust

B,E Fill subsequent output lines. The
register .u is 1 in fill mode and 0
in nofill mode.

B,E Nofill. Subsequent output lines
are neither filled nor adjusted.
Input text lines are copied
directly to output lines without
regard for the current line length.

E Line adjustment is begun. If fill
mode is not on, adjustment will
be deferred until fill mode is back
on. If the type indicator e is
present, the adjustment type is
changed as shown in the following
table.

The nroif/troif Reference Manual 2-11

SECTION 2

.na adjust

.ce N off

2.5 VERTICAL SPACING

2.5.1 Baseline Spacing

E

Formatters

Indicator Adjustment
1 adjust left margin only
r adjust right margin only
e center

b or n adjust both margins
absent unchanged

Noadjust. Adjustment is turned
off; the right margin will be
ragged. The adjustment type for
ad is not changed. Output line
filling still occurs if fill mode is .
on.

N 1 B,ECenter the next N input text
lines within the current (line­
length minus indent). If N 0,
any residual count is cleared. A
break occurs after each of the N
input lines. If the input line is
too long, it will be left-adjusted.

The vertical spacing (V) between the baselines of successive output lines
can be set using the vs request with a resolution of 1/144 inch = 1/2
point in troil', and to the output device resolution in nroil'. V must be
large enough to accommodate the character sizes on the affected output
lines. For the common type sizes (9-12 points), usual typesetting practice
is to set V to 2 points greater than the point size; troil' default is 10-
point type on a 12-point spacing. (This document is set in 12-point type
on 13.5-point spacing). The current Vis available in the .v register.
Multiple- V line separation (e. g. double spacing) may be requested with
Is.

2.5.2 Extra Line Space

If a word contains a vertically tall construct requiring the output line
containing it to have extra vertical space before and/or after it, the
extra-line space function \x' N' can be imbedded in or attached to that
word. In this and other functions having a pair of delimiters around
their parameter (here '), the delimiter choice is arbitrary, except that it
can't look like the continuation of a number expression for N. If N is
negative, the output line containing the word will be preceded by N extra
vertical space; if N is positive, the output line containing the word will
be followed by N extra vertical space. If successive requests for extra
space apply to the same line, the maximum values are used. The most
recently utilized post-line extra line-space is available in the .a register.

2-12 The nroil'jtroil' Reference Manual

","'--'.

SECTION 2 Formatters

0 2.5.3 Blocks of Vertical Space

A block of vertical space is ordinarily requested using sp, which honors
the no-space mode and which does not space past a trap. A contiguous
block of vertical space may be reserved using sv.

Request Initial II No
Form Value Argument Notes Explanation

.vsN 12pts previous E,p Set vertical baseline spacing size
V. Transient extra vertical space
available with \x' N' (see above).
Nroff uses a default of 1/6th
inch .

• 1sN N 1 previous E Line spacing set to ±N. N-l V s

0
(blank lines) are appended to each
output text line. Appended blank
lines are omitted, if the text or
previous appended blank line
reached a trap position.

.spN N IV B,v Space vertically in either direc-
tion. If N is negative, the motion
is backward (up) and is limited to
the distance to the top of the

0 page. Forward (down) motion is
truncated to the distance to the
nearest trap. If the no-space
mode is on, no spacing occurs (see
ns, and rs below).

.svN N IV v Save a contiguous vertical block
of size N. If the distance to the
next trap is greater than N, N

0 vertical space is output. No-
space mode has no effect. If this
distance is less than N, no verti-
cal space is immediately output,
but N is remembered for later
output (see os). Subsequent sv
requests will overwrite any still
remem bered N.

• os Output saved vertical space .
No-space mode has no effect.
Used to finally output a block of
vertical space requested by an
earlier sv request.

.ns space D No-space mode turned on. When

C; on, the no-space mode inhibits sp
requests and bp requests without

The nroff/troff Reference Manual 2-13

SECTION 2

.rs space D

blankline- B

Formatters

a next page number. The no­
space mode is turned off when a
line of output occurs, or with rs.

Restore spacing. The no-space
mode is turned off.

Causes a break and output of a
blank line exactly like sp 1.

2.6 LINE LENGTH AND INDENTING

The maximum line length for fill mode may be set with 11. The indent
may be set with in; an indent applicable to only the next output line
may be set with ti. The line length includes indent space but not page
offset space. The line-length minus the indent is the basis for centering
with ceo The effect of 11, in, or ti is delayed, if a partially collected line
exists, until after that line is output. In fill mode the length of text on
an output line is less than or equal to the line length minus the indent.
The current line length and indent are available in registers .1 and .i
respectively. The length of three-part titles produced by tl is indepen­
dently set by It.

Request
Form

.11 ±N

Initial
Value

6.5 in

• in ±N N 0

.ti ±N

If No
Argument Notes Explanation

previous E,m Line length is set to ±N. In troff
the maximum (line length) +
(page offset) is about 7.54 inches .

previous B,E,m Indent is set to ±N. The indent
is prepended to each output line.

ignored B,E,m Temporary indent. The next out­
put text line will be indented a
distance ±N with respect to the
current indent. The resulting
total indent may not be negative.
The current indent is not
changed.

2.7 MACROS, STRINGS, DIVERSIONS, TRAPS

2.7.1 Macros and Strings

A macro is a named set of arbitrary lines that may be invoked by name
or with a trap. A string is a named string of characters, not including a
newline character, that may be interpolated by name at any point.
Request, macro, and string names share the same name list. Macro and
string names may be one or two characters long and may usurp previ­
ously defined request, macro, or' string names. Any of these entities may
be renamed with rn or removed with rm. Macros are created by de and

2-14 The nroff/troff Reference Manual

(

\

r--

\ --

--~--------.- ~-----~--.

o

o

o

c

SECTION 2 Formatters

di, and appended to by am and da; di and da cause normal output to
be stored in a macro. Strings are created by ds and appended to by as.
A macro is invoked in the same way as a request; a control line beginning
.xx will interpolate the contents of macro xx. The remainder of the line
may contain up to nine arguments. The strings x and xx are interpolated
at any desired point with \ *x and \ *(xx respectively. String references
and macro invocations may be nested.

2.7.2 Copy Mode Input Interpretation

During the definition and extension of strings and macros, the input is
read in copy mode. That is to say, input is copied without interpreta­
tion, except for the following special cases.

• The contents of number registers indicated by \n are interpolated.

• Strings indicated by \ * are interpolated.

• Arguments indicated by \$ are interpolated.

• Concealed newlines indicated by \(newline) are eliminated.

• Comments indicated by \" are eliminated.

• \ t and \a are interpreted as AScn horizontal tab and SOH respec­
tively.

• \ \ is interpreted as "\".

• \. is interpreted as "." .

These interpretations can be suppressed by prep ending a \. For example,
since \ \ maps into a \, \ \n will copy as \n which will be interpreted as a
number register indicator when the macro or string is reread.

2.7.3 Arguments

When a macro is invoked by name, troif assumes that the remainder of
the line contains arguments to that macro. Up to nine arguments are
allowed. Arguments are separated by the space character. Arguments
that contain spaces must be surrounded by double-quotes. Pairs of
double-quotes may be imbedded in double-quoted arguments to represent
a single double-quote. If the desired arguments won't fit on a line, a con­
cealed newline may be used to continue on the next line.

When a macro is invoked, the input level is pushed down and any argu­
ments available at the previous level become unavailable until the macro
is completely read and the previous level is restored. A macro's own
arguments can be interpolated at any point within the macro with \ $N,
which interpolates the Nth argument (1 <N<9). If an invoked argu­
ment doesn't exist, a null string results. For example, the macro xx may
be defined by

The nroif/troif Reference Manual 2-15

SECTION 2

.de xx \"begin definition
Today is \\$1 the \\$2.

\" end definition

and called by

.xx Monday 14th

to produce the text

Today is Monday the 14th.

Formatters

Note that the \$ was concealed in the definition with a prepended \.
The number of currently available arguments is in the .$ register.

Because string referencing is implemented as an input-level push down,
no arguments are available from within a string. No arguments are
available within a trap-invoked macro.

Arguments are copied in copy mode onto a stack where they are avail­
able for reference. The mechanism does not allow an argument to con­
tain a direct reference to a long string (interpolated at copy time) and it
is advisable to conceal string references (with an extra \) to delay inter­
polation until argument reference time.

2.7.4 Diversions

Processed output may be diverted into a macro for purposes such as foot­
note processing or determining the horizontal and vertical size of some
text for conditional changing of pages or columns. A single diversion
trap may be set at a specified vertical position. The number registers dn
and dl respectively contain the vertical and horizontal size of the most
recently ended diversion. Processed text that is diverted into a macro
retains the vertical size of each of its lines when reread in nofill mode
regardless of the current V. Constant-spaced (cs) or emboldened (bd)
text that is diverted can be reread correctly only if these modes are again
or still in effect at reread time. One way to do this is to imbed in the
diversion the appropriate cs or bd requests with the transparent mechan­
ism described later in this chapter.

Diversions may be nested. Certain parameters and registers are associ-
ated with the current diversion level. .

Note: The top non-diversion level may be thought of as the Oth
diversion level.

These parameters include the diversion trap and associated macro, no­
space mode, the internally-saved marked place (see mk and rt), the
current vertical place (.d register), the current high-water text baseline
(.h register), and the current diversion name (.z register).

2-16 The nroif/troif Reference Manual

(... -.,.
I \

U

o

o

SECTION 2 Formatters

2.7.5 Traps

Three types of trap mechanisms are available: page traps, a diversion
trap, and an input-line-count trap. Macro-invocation traps may be
planted using wh at any page position including the top. This trap posi­
tion may be changed using ch. Trap positions at or below the bottom of
the page have no effect unless moved to within the page or rendered
effective by an increase in page length. Two traps may be planted at the
same position only by first planting them at different positions and then .
moving one of the traps; the first planted trap will conceal the second
unless and until the first one is moved. If the first one is moved back, it
again conceals the second trap. The macro associated with a page trap is
automatically invoked when a line of text is output whose vertical size
reaches or passes the trap position. Reaching the bottom of a page
springs the top-of-page trap, if any, provided there is a next page. The
distance to the next trap position is available in the .t register; if there
are no traps between the current position and the bottom of the page,
the distance returned in .t is the distance to the page bottom.

A macro-invocation trap effective in the current diversion may be planted
using dt. The.t register works in a diversion; if there is no subsequent
trap a large distance is returned. For a description of input-line-count
traps, see it below.

Request Initial II No
Form Value Argument Notes Explanation

• de xx yy - ·YY=··

.arn xx yy- ·yY=··

.ds xx st - ignored

The nroff/troff Reference Manual

Define or redefine the macro xx .
The contents of the macro begin
on the next input line. Input
lines are copied in copy mode
until the definition is terminated
by a line beginning with .yy,
w hereupon the macro yy is called.
In the absence of yy, the
definition is terminated by a line
beginning with" •• ". A macro
may contain de requests provided
the terminating macros differ or
the contained definition termina­
tor is concealed. " •• " can be con­
cealed as \ \ •• which will copy as
\ •• and be reread as " •• " .

Append to macro (append version
of de).

Define a string xx containing st.
Any initial double-quote in st is
stripped off to permit initial
blanks.

2-17

SECTION 2

.as xx st - ignored

. rm xx ignored

.rn xx yy - ignored

• di xx end

.da xx end

. wh Nxx -

. ch xx N -

• dt N xx - off

. it N xx off

2-18

D

D

v

Formatters

Append st to string xx (append
version of ds).

Remove request, macro, or string .
The name xx is removed from the
name list and any related storage
space is freed. Subsequent refer­
ences will have no effect.

Rename request, macro, or string
xx to yy. If yy exists, it is first
removed .

Divert output to macro xx. Nor­
mal text processing occurs during
diversion except that page
offsetting is not done. The diver­
sion ends when the request di or
da is encountered without an
argument; extraneous requests of
this type should not appear when
nested diversions are being used.

Divert, appending to xx (append
version of di) .

Install a trap to invoke xx at page
position N; a negative N will be
interpreted with respect to the
page bottom. Any macro previ­
ously planted at N is replaced by
xx. A zero N refers to the top of
a page. In the absence of xx, the
first trap found at N is removed .

v Change the trap position for
macro xx to be N. In the absence
of N, the trap, if any, is removed .

D, v Install a diversion trap at position
N in the current diversion to
invoke macro xx. Another d twill
redefine the diversion trap. If no
arguments are given, the diver­
sion trap is removed .

E Set an input-line-count trap to
invoke the macro xx after N lines
of text input have been read (con­
trol or request lines don't count).
The text may be in-line text or
text interpolated by inline or
trap-invoked macros.

The nroff/troff Reference Manual

,
'

(
I

\,

I
\ ',,--

o

o

o

SECTION 2

.em xx none none

Formatters

The macro xx will be invoked
when all input has ended. The
effect is the same as if the con­
tents of xx had been at the end of
the last file processed.

2.8 NUMBER REGISTERS

A variety of parameters are available as pre-defined, named number
registers. In addition, the you may define your own named registers.
Register names are one or two characters long and do not conflict with
request, macro, or string names. Except for certain pre-defined, read­
only registers, a number register can be read, written, automatically
incremented or decremented, and interpolated into the input in a variety
of formats. One common use of user-defined registers is to automatically
number sections, paragraphs, lines, etc. A number register may be used
any time numerical input is expected or desired and may be used in
numerical expressions.

Number registers are created and modified using nr, which specifies the
name, numerical value, and the auto-increment size. Registers are also
modified, if accessed with an auto-incrementing sequence. If the registers
x and xx both contain N and have the auto-increment size M, the follow­
ing access sequences have the effect shown:

Effect on Value
Sequence Register Interpolated
\nx none N
\n(xx none N
\n+x x incremented by M N+M
\n-x x decremented by M N-M
\n+(xx xx incremented by M N+M
\n-(xx xx decremented by M N-M

When interpolated, a number register is converted to decimal (default),
decimal with leading zeros, lowercase Roman, uppercase Roman, lower­
case sequential alphabetic, or uppercase sequential alphabetic according
to the format specified by ar.
Request Initial If No
Form Value Argument Notes Explanation

.nr R ±N M u

.ar R c arabic

The nroft'/troft' Reference Manual'

The number register R is assigned
the value ±N with respect to the
previous value, if any. The incre­
ment for auto-incrementing is set
to M.

Assign format c to register R.
The available formats are:

2-19

. _-_.-.. _--_._-_._ _-_ ---------

SECTION 2

.rr R ignored

Formatters

Numbering
Format Sequence

1 0,1,2,3,4,5, ...
001 000,001,002,003,004,005, ...

j O,i,ii,iii,iv,v, ...
I O,I,II,III,IV,V, ...
a O,a,b,c, ... ,z,aa,ab, ... ,zz,aaa, ...
A O,A,BJC, ... JZ,AAJAB, ... ,ZZ ,AAA, ...

An arabic format having N digits
specifies a field width of N digits.
The read-only registers and the
width function are always arabic.

Remove register R. If many
registers are being created
dynamically, it may become
necessary to remove un used regis­
ters to recapture storage space for
new registers.

2.9 TABS, LEADERS, AND FIELDS

2.9.1 Tabs and Leaders

The ASCII horizontal tab character and the ASCII SOH (hereafter known as
the "leader" character) can both be used to generate either horizontal
motion or a string of repeated characters. The length of the generated
entity is governed by internal tab stops specified with the .ta request.
The default difference is that tabs generate motion and leaders generate a
string of periods; te and Ie offer the choice of repeated character or
motion. There are three types of internal tab stops: left adjusting, right
adjusting, and centering. In the following table: D is the distance from
the current position on the input line (where a tab or leader was found)
to the next tab stop; next-string consists of the input characters following
the tab (or leader) up to the next tab (or leader) or end of line; and W is
the width of next-string.

Tab Length of motion or Location of
tYI>_e repeated characters next-8tring
Left D Following D

Right D-W Right adjusted within D
Centered D-W/2 Centered on right end of D

The length of generated motion is allowed to be negative, but that of a
repeated character string cannot be. Repeated character strings contain
an integer number of characters, and any residual distance is prepended
as motion. Tabs or leaders found after the last tab stop are ignored, but
may be used as next-string terminators.

2-20 . The nroff/troff Reference Manual

~,

i
,,~-.-

o

o

o

c

SECTION 2 Formatters

Tabs and leaders are not interpreted in copy mode. \ t and \a always
generate a non-interpreted tab and leader respectively, and are
equivalent to actual tabs and leaders in copy mode.

2.9.2 Fields

A field is contained between a pair of field delimiter characters, and con­
sists of sub-strings separated by padding indicator characters. The field
length is the distance on the input line from the position where the field
begins to the next tab stop. The difference between the total length of
all the sub-strings and the field length is incorporated as horizontal pad­
ding space that is divided among the indicated padding places. The
incorporated padding is allowed to be negative. For example, if the field
delimiter is # and the padding indicator is "', #'" xxx'" right# specifies a
right-adjusted string with the string xxx centered in the remaining space.

Request Initial If No
Form Value Argument Notes Explanation

.ta Nt ... 0.8; 0.5in none E,m Set tab stops and types. t-R,
right adjusting; t=C, centering; t
absent, left adjusting. troif tab
stops are preset every 0.5in.;
nroif every 0.8in. The stop
values are separated by spaces,
and a value preceded by + is
treated as an increment to the
previous stop value .

. tc c none none E The tab repetition character
becomes c, or is removed specify­
ing motion .

• Ic c none E The leader repetition character
becomes c, or is removed specify­
ing motion .

• fc a b off off The field delimiter is set to a; the
padding indicator is set to the
space character or to b, if given.
In the absence of arguments the
field mechanism is turned off.

2.10 CONVENTIONS AND TRANSLATIONS

2.10.1 Input Character Translations

Normal character input has already been covered, as has input treatment
of the ASCII control characters horizontal tab SOH and backspace. The
newline delimits input lines. In addition, STX, ETX, ENQ, ACK, and BEL
may be used as delimiters or translated into a graphic with tr. All other
input characters are ignored.

The nroif/troif Reference Manual 2-21

SECTION 2 Formatters

The escape character \ introduces escape sequences; it causes the follow­
ing character to mean something else. There is a complete list of such
sequences at the end of this chapter. The escape character \ should not
be confused with the AScn control character ESC of the same name. The
escape character itself can be input with the sequence \ \. It can be
changed with ec, and all that has been said about the default \ becomes
true for the new escape character. The request \e prints the current
escape character. The escape mechanism may be turned off with eo and
restored with ec.

Request Initial II No
Form Value Argument Notes Explanation

.ec c \ \ Set escape character to \, or to c,
if given.

. eo on Turn escape mechanism off .

2.10.2 Ligatures

Five ligatures are normally available: fl., fl., if, fli, and fH. They may be
input (even in nroif) by \(fi, \(fl., \(if, \(Fi, and \(FI respectively. The
ligature mode is normally on in troif, and automatically invokes liga­
tures as needed.

Request Initial
Form Value

.lg N off; on

II No
Argument Notes Explanation

on Ligature mode is turned on if N is
absent or non-zero, and turned off
if N o. If N 2, only the two­
character ligatures are automati­
cally invoked. Ligature mode is
inhibited for request, macro,
string, register, or file names, and
in copy mode. No effect in nroif.

2.10.3 Backspacing, Underlining, Overstriking

Unless in copy mode, the ASCII backspace character is replaced by a
backward horizontal motion having the width of the space character.

Nroif automatically underlines characters in the underline font,
specifiable with uf, on font position 2 (normally Italic). In addition to ft
and \fF, the underline font may be selected by ul and cu. Underlining is
restricted to an output-device-dependent subset of characters.

2-22 The nroifJtroif Reference Manual

--_ ... _--_ .. _ ... -

("
\"

('
\ "---, .

o

C)

o

o

o

SECTION 2

Request
Form

.ul N

.cu N

.uf F

Initial
Value

off

off

Italic

Formatters

II No
Argument Notes Explanation

N 1 E Underline in nroft' (italicize in
troft') the next N input text lines.
Actually, switch to underline
·font, saving the current font for

N 1 E

Italic

later restoration; other font
changes within the span of a ul
will take effect, but the restora­
tion will undo the last change.
Output generated by tl is affected
by the font change, but does not
decrement N. If N> 1, there is
the risk that a trap interpolated
macro may provide text lines
within the span; environment
switching can prevent this.

A variant of ul that causes every
character to be underlined in
nroft'. Identical to ul in troft'.

Underline font set to F. In nroif,
F may not be on position 1 (ini­
tially Roman).

2.10.4 Request Characters

The default request character. (dot) and no-break request character '
(accute accent) may be changed. Such a change, if undertaken, must be
compatible with the design of any macros used during the span of the
change, and particularly of any trap-invoked macros.

Request Initial II No
Form Value Argument Notes Explanation

.cc c

.c2 c

2.10.5 Output Translation

E

E

The basic request character is set
to c, or reset to " ." .

The nobreak request character is
set to c, or reset to " ,,, .

One character can be made to stand-in for another character using tr.
All text processing takes place with the input (stand-in) character which
appears to have the width of the final (output) character. The graphic
translation occurs at the moment of output (including diversion).

The nroft'jtroff Reference Manual 2-23

------_ -----

SECTION 2

Request
Form

Initial
Value

. tr abed ... none

Formatters

If No
Argument Notes Explanation

o Translate a into b, e into d, etc .
If an odd number of characters is
given, the last one will be
mapped into the space character.
To be consistent, a particular
translation must stay in effect
from input to output time.

2.10.6 Transparent Throughput

An input line beginning with a \! is read in copy mode and transparently
output (without the initial \!); troff is otherwise unaware of the line's
presence. This mechanism may be used to pass control information to a
post-processor or to imbed control lines in a macro created by a diver­
sion.

2.10.7 Comments and Concealed Newlines

You may split a long input line that must stay one line (e. g. a string
definition, or unfilled text) into many physical lines by ending all but the
last one with the escape \. The sequence \(newline) is always ignored­
except in a comment. Comments may be imbedded at the end of any
line by prefacing them with \". The newline at the end of a comment
cannot be concealed. A line beginning with \" will appear as a blank line
and behave like .sp 1; a comment can be on a line by itself by beginning
the line with. \" .

2.11 LOCAL MOTIONS

2.11.1 Local Motions

The functions \ v' N' and \h' N' can be used for local vertical and hor­
izontal motion respectively. The distance N may be negative; the posi­
tive directions are rightward and downward. A .loeal motion is one con­
tained within a line. To avoid unexpected vertical dislocations, be sure
that the net vertical local motion within a word in filled text and other­
wise within a line is zero. The escape sequences providing local motion
are summarized in the following table.

Vertical Effect in Horizontal Effect in
Local Motion troff nrotT Local Motion trotT

\v'N ' Move distance N \h'N ' Move distance N

nrotT

\(space) Unpaddable space-size space
\u 0.5 em up 0.5 line up \0 Digit-size space
\d 0.5 em down 0.5 line down
\r 1 em up 1 line up \1 1/6 em space ignored

\" 1/12 em space ignored

As an example, E2 can be generated by the following sequence.

2-24 The nroff/troff Reference Manual

C--:~
-,-

(

I~

\ "-_ ..

o

o

o

o

o

SECTION 2 Formatters

E\s-2\ v' -O.4m ' 2\ v' O.4m' \s+2

It should be noted in this example that the 0.4 em vertical motions are at
the smaller size.

2.11.2 The Width Function

The width function \ w ' string' generates the numerical width of string
(in basic units). Size and font changes may be safely imbedded in string,
without affecting the current environment. For example, .ti -\ w' 1. ' u
could be used to temporarily indent leftward a distance equal to the size
of the string "1. ".

The width function also sets three number registers. The registers st and
sb are set respectively to the highest and lowest extent of string relative
to the baseline; then, for example, the total height of the string is
\n(stu-\n(sbu. In troif, the number register ct is set to a value
between 0 and 3: 0 means that all of the characters in string were short
lower-case characters without descenders (like e); 1 means that at least
one character has a descender (like y); 2 means that at least one charac­
ter is tall (like H); and 3 means that both tall characters and characters
with descenders are present.

2.11.3 The Horizontal Place Marker

The escape sequence \kx will cause the current horizontal position in the
input line to be stored in register x. As an example, the construction
\kxword\h' l\nxu+2u' word will embolden word by backing up to
almost its beginning and overprinting it, resulting in word.

2.12 OVERSTRIKES, BRACKETS, AND LINES

2.12.1 Overstriking

The overstrike function allows centered overstriking of up to nine charac­
ters. It is invoked as \0' string'. The characters in string overprinted
with centers aligned; the total width is that of the widest character.
String cannot contain local vertical motion. As exam pIes, \0' e \ ' , pro­
duces e, and \o'\(mo\(sl' produces ri.
2.12.2 Zero-Width Characters

The function \zc will output c without spacing over it, and can be used
to produce left-aligned overstruck combinations. As examples, \z\(ci\(pl
will produceffi, and \(br\z\(rn\(ul\(br will produce the smallest possi­
ble constructed box IJ .
2.12.3 Large Brackets

The Special Mathematical Font contains a number of bracket construc­
tion pieces ((t) J ~ ~ 1 L J r 1) that can be combined into vari­
ous bracket styles. The tunction \ b' string' may be used to pile up vert­
ically the characters in string (the first character on top and the last at
the bottom); the characters are vertically separated by 1 em and the

The nroif/trotf Reference Manual 2-25

SECTION 2 Formatters

total pile is centered 1/2 em above the current baseline (line in nroff).
For example,

\b' \(Ie\(Ir' E\ \b' \(re\(rr' \x' -O.5m' \x' O.5m'

produces [E] .

2.12.4 Line Drawing

The function \1' Nc' will draw a string of repeated c 's towards the right
for a distance N. (\1 is \(lower-case L, not number 1). If c looks like a
continuation of an expression for N, it may be insulated from N with a
\&. If c is not specified, the _ (baseline rule) is used (underline character
in nroff). If N is negative, a backward horizontal motion of size N is'
made before drawing the string. Any space resulting from N /(size of c)
having a remainder is put at the beginning (left end) of the string. In
the case of characters that are designed to be connected such as
baseline-rule _ , underrule _ , and root-en - , the remaining space is
covered by overlapping. If N is less than the width of c, a single c is
centered on a distance N. As an exam pIe, a macro to underscore a string
can be written

.de us
\ \$1 \1' O\(uI'

or one to draw a box around a string

.de bx
\(br\ \\$1\ \(br\I' O\(rn' \1' O\(uI'

such that

.uI "underlined words"

and

.bx "words in a box"

yield underlined words and I words in a box I.
The functIon \L' Nc' will draw a vertical line consisting of the (optional)
character c stacked vertically apart 1 em (1 line in nroff), with the first
-two characters overlapped, if necessary, to form a continuous line. The
default character is the box rule I (\ (br); the other suitable character is
the bold vertical I (\ (bv). The line is begun without any initial motion
relative to the current baseline. A positive N specifies a line drawn
downwards and a negative N specifies a line drawn upwards. Mter the
line is drawn no compensating motions are made; the current baseline is
at the end of the line.

2-26 The nroff/troff Reference Manual

,/'- .

(
\ ,- -

\,,-./

Cj

o

o

o

SECTION 2 Formatters

The horizontal and vertical line drawing functions may be used in com bi­
nation to produce large boxes. The zero-width box-rule and the em wide
underrule were designed to form corners when using I-em vertical spac­
ings. For example the macro

.de eb
\" compensate for next automatic baseline spacing
.sp -1
\" avoid possibly overflowing word buffer
.nf
\"do box
\h' -.5n'\L' 1\ \nau-l '\1'\ \n(.lu+ln\(ul'\L' -1\ \nau+l' \1' IOu-.5n\(ul' .tr 1
.ft

will draw a box around some text whose beginning vertical place was
saved in number register a (e.g. using .mk/a) as was done for this para­
graDh.

2.13 HYPHENATION

The automatic hyphenation feature may be switched off and on as
needed. When switched on with hy, several variants may be set. A
hyphenation indicator character may be imbedded in a word to specify
desired hyphenation points, or may be prepended to suppress hyphena­
tion. In addition, you may specify a small exception word list.

Only words that consist of a central alphabetic string surrounded by
(usually null) non-alphabetic strings are considered candidates for
automatic hyphenation. Words that were input containing hyphens
(minus signs), em-dashes (\ (em), or hyphenation indicator characters,
such as mother-in-law, are always subject to splitting after those charac­
ters, whether or not automatic hyphenation is on.

Request Initial If No
Form Value Argument Notes Explanation

.nh hyphenate - E Automatic hyphenation is turned
off.

.hyN on,N-I on,N-I E

.he c \% \% E

The nroft'/troft' Reference Manual

Automatic hyphenation is turned
on for N > 1, or off for N- o. If
N- 2, last lines (ones that will
cause a trap) are not hyphenated.
For N- 4 and 8, the last and
first two characters respectively
of a word are not split off. These
values are additive; i. e. N- 14
will invoke all three restrictions.

Hyphenation indicator character
is set to c or to the default \ %.
The indicator does not appear in

2-27

SECTION 2

.hw wordl ... ignored

Formatters

the output.

Specify hyphenation points in
words with imbedded minus
signs. Versions of a word with
terminal s are implied; i. e. dig-it
implies dig-its. This list is exam­
ined initially and after each suffix
stripping. The space available is
small, about 128 characters.

2.14 THREE-PART TITLES

The titling function tl provides for automatic placement of three fields at
the left, center, and right of a line. The title-length is specified with It,
which may be used anywhere, and is independent of the normal text col­
lecting process. A common use of It is in header and footer macros.

Request Initial If No
Form Value Argument Notes Explanation

.tI 'left 'center 'right' - The strings left, center, and right
are respectively left-adjusted, cen­
tered, and right-adjusted in the
current title-length. Any of the
strings may be empty, and over­
lapping is permitted. If the
page-number character (initially
%) is found within any of the
fields, it is replaced by the

.pc c %

.It ±N 6.5 in

current page number having the
format assigned to register %.
Any character may be used as the
string delimiter.

off The page n um ber character is set
to c, or removed. The page­
number register remains %.

previous E,m Length of title set to ±N. The
line-length and the title-length
are independent. Indents do not
apply to titles; page-offsets do.

2.15 OUTPUT LINE NUMBERING

Automatic numbering of output lines may be requested with nm. When
in effect, a three-digit, arabic number plus a digit-space is prepended to
output text lines. The text lines are thus offset by four digit-spaces,
although they retain their line length. A reduction in line length may be
desired to keep the right margin aligned with an earlier margin. Blank

2-28 The nroif/troif Reference Manual

C~

o

o

o

o

SECTION 2 Formatters

lines, other vertical spaces, and lines generated by tl are not numbered.
Numbering can be temporarily suspended with nn, or with an .nm fol­
lowed by a later .nm +0. In addition, a line number indent I, and the
number-text separation S may be specified in digit-spaces. Further, it
can be specified that only those line numbers that are multiples of some
number M are to be printed (the others will appear as blank number
fields).

Request
Form

Initial
Value

.nm ±N M S I

.nn N

If No
Argument Notes Explanation

off E Line number mode. If ±N is
given, line numbering is turned
on, and the next output line num­
bered is numbered ±N. Default
values are M 1, S= 1, and

N-1 E

I 0. Parameters corresponding
to missing arguments are
unaffected; a non-numeric argu­
ment is considered missing. In
the absence of all arguments,
numbering is turned off; the next
line number is preserved for pos­
sible further use in number regis­
ter In.

The next N text output lines are
not numbered.

2.16 CONDITIONAL ACCEPTANCE OF INPUT

In the following discussion, c is a one-character, built-in condition name,
! signifies not, N is a numerical expression, stringl and string2 are strings
delimited by any non-blank, non-numeric character not in the strings,
and anything represents what is conditionally accepted.

Request Initial If No
Form Value Argument Notes Explanation

.if c anything

• if !c anything

.if N anything u

• if !N anything u

.if ' stringl' string2' anything

The nroiT/troiT Reference Manual

If condition c true, accept any­
thing as input; in multi-line case
use \ { anything\} .

If condition c false, accept any­
thing.

If expression N > 0, accept any­
thing .

If expression N < 0, accept any­
thing.

If stringl identical to string2,
accept anything.

2-29

SECTION 2 Formatters

.if ! ' stringl ' string2' anything - If stringl not identical to string2,
accept anything.

.ie c anything

• el anything

2.16.1 Built-In Conditions

u If portion of if-else; all above
forms (like if) .

Else portion of if-else.

There are several conditions of which troif is always aware. These
built-in condition names are:

Condition True If
o
e
t
n

Current page number is odd
Current page number is even
Formatter is troff
Formatter is nroft"

If the condition c is true, or if the number N is greater than zero, or if
the strings compare identically (including motions and character size and
font), anything is accepted as input. If a ! precedes the condition,
number, or string comparison, the sense of the acceptance is reversed.

Any spaces between the condition and the beginning of anything are
skipped over. The anything can be either a single input line (text, macro,
or whatever) or a number of input lines. In the multi-line case, the first
line must begin with a left delimiter \ { and the last line must end with a
right delimiter \}.

The request ie (if-else) is identical to if except that the acceptance state
is remembered. A subsequent and matching el (else) request then uses
the reverse sense of that state. ie - el pairs may be nested.

Some examples are:

.if e .tl 'Even Page %' , ,

which outputs a title if the page number is even; and

.ie \n%>1 \{\
, sp O.5i
. tl ' Page %' , ,
, sp 1.2i \}
.el .sp 2.5i

which treats page 1 differently from other pages.

2.17 ENVIRONMENTS

A number of the parameters that control the text processing are gathered
together into an environment, which can be switched by the user. The
environment parameters are those associated with requests noting E in
their Notes column; in addition, partially collected lines and words are in
the environment. Everything else is global; examples are page-oriented

2-30 The nroif/troif Reference Manual

c

o

o

o

o

o

SECTION 2 Formatters

parameters, diversion-oriented parameters, number registers, and macro
and string definitions. All environments are initialized with default
parameter values.

Request Initial II No
Form Value Argument Notes Explanation

.ev N N 0 previous Environment switched to environ­
ment O<N<2. Switching is done
in push-down fashion so that res­
toring a previous environment
must be done with .ev rather
than specific reference.

2.18 INSERTIONS FROM STANDARD INPUT

The input can be temporarily switched to the system standard input
with the rd request, which will switch back when two newlines in a row
are read (the extra blank line is not used). This mechanism is useful for
things like forms and form letters.

Request Initial If No
Form Value Argument Notes Explanation

.rd p p-BEL Read insertion from the standard
input until two new lines in a row
are found. If the standard input
is the user's keyboard, p (or a
BEL) is written onto the user's
terminal. rd behaves like a
macro, and arguments may be
placed after p.

.ex

2.18.1 Prompts

Exit from nroif/troif. Text pro­
cessing is terminated exactly as if
all input had ended.

If insertions are to be taken from the terminal keyboard while output is
being printed on the terminal, the command line option -q will turn off
the echoing of keyboard input and prompt only with BEL. The regular
input and insertion input cannot be simultaneously read from the stan­
dard input.

As an example, multiple copies of a form letter may be prepared by
entering the insertions for all the copies in one file to be used as the stan­
dard input, and causing the file containing the letter to reinvoke itself
using nx. The process would ultimately be end.ed by an ex in the inser­
tion file.

The nroif/troif Reference Manual 2-31

SECTION 2 Formatters

2.1Q INPUT/OUTPUT FILE SWITCHING

Request Initial
Form Value

.so filename

.nx filename

.pi program

II No .
Argument Notes Explanation

end-of-file -

Switch source file. The top input
(file reading) level is switched to
filename. The effect of a so
encountered in a macro is not felt
until the input level returns to
the file level. When the new file
ends, input is again taken from
the original file. so lines may be
nested.

Next file is filename. The current
file is considered ended, and the
input is immediately switched to
filename.

Pipe output to program (nroff
only). This request must occur
before any printing occurs. No
arguments are transmitted to pro-
gram.

2.20 MISCELLANEOUS REQUESTS

Request
Form

Initial
Value

.me eN -

.tm string-

.ig YY

2-32

II No
Argument Notes Explanation

off E,m Specifies that a margin character

newline

·YY=··

c appear a distance N to the right
of the right margin after each
non-empty text line (except those
produced by tl). If the output
line is too long (as can happen in
nofill mode) the character will be
appended to the line. If N is not
given, the previous N is used; the
initial N is 0.2 inches in nroff
and 1 em in troff. The margin
character used with this para­
graph was a 14-point box-rule.

Mter skipping initial blanks,
string (rest of the line) is read in
copy mode and written on the
standard message output.

Ignore input lines. ig behaves
exactly like de except that the

The nroff/troff Reference Manual

o

o

o

o

SECTION 2

.pm t all

. fl B

Formatters

input is discarded. The input is
read in copy mode, and any
auto-incremented registers will be
affected.

Print macros. The names and
sizes of all of the defined macros
and strings are printed on the ter­
minal; if t is given, only the total
of the sizes is printed. The sizes
is given in blocks of 128 charac­
ters .

Flush output buffer. Used in
interactive debugging to force
output.

2.21 OUTPUT AND ERROR MESSAGES

The output from tm, pm, and the prompt from rd, as well as various
error messages are written to message (or error) output. By default, both
standard and error output appear on the terminal (the transcript pad).
The Bourne shell allows error output to be independantly redirected.
The C shell does not.

Various error conditions may occur during the operation of nroff and
troff. Errors that have only local impact do not cause processing to ter­
minate. Two examples are word overflow, caused by a word that is too
large to fit into the word buffer (in fill mode), and line overflow, caused
by an output line that grew too large to fit in the line buffer; in both
cases, a message is printed, the offending excess is discarded, and the
affected word or line is marked at the point of truncation with a * in
nroff and a {::in troff. The aim is to continue processing, if possible,
since any output produced may be useful for de bugging. If a serious error
occurs, processing terminates, and an appropriate message is printed.
Examples are the inability to create, read, or write files, and the exceed­
ing of certain internal limits that make future output unlikely to be use­
ful.

The nroffJtroff Reference Manual 2-33

SECTION 2 Formatters

2.22 FONT STYLE EXAMPLES

The following fonts are printed in 12-point, with a vertical spacing of
14-point, and with non-alphanumeric characters separated by a quarter­
em space.

Times Roman

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567Sg0
! $ % & ()" * +-., /:; =? [] I
• --_lf4 fiflffffifH 0 t' ©

Times Italic

abcdeJghijklmnopqrstuvwxyz
ABCDEF GHIJKLMNOPQRS TUVWXYZ
1234567890
!$%&()"*+-.,/ :;=?[JI
• fiflffffiffl 0 t' ©

Times Bold

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890
!$%&()"*+-·,/:;=?[]I
• fiflffffifH 0 t' ©

Special Mathematical Font

"'\"-'- /<>{}#@+-=*
af318€~'I10tK)...J-l

vE07rpacpTv¢x1/Jw
rLl9A5IIETiPwO
-J- > < = r--J ~ -:F --+ ~ t ! X -;- ±,u n C J C J 00 a
§ yo -., J ~ 0 E * =} {:::: 0 IO(t l J ~ } I LJ rll

2-34 The nroff/troff Reference Manual

,,---',
I

'~

o

o

o

o

SECTION 2 Formatters

2.23 INPUT CHARACTER NAMES

2.23.1 Special Characters on Standard Fonts

This table indicates various escape sequences that you can use to
obtain characters that aren't on most terminal keyboards.

Note: The availability of output characters varies from device
to device. If the character is not available, it prints as a
I-em space, as can be seen in the following examples of
output from an IMAGEN CX laser printer.

Character Input Character
(glyph) Name Name , ,

close quote , ,
open quote

- \(em 3/4 Em dash
- - hyphen
- \(hy hyphen
- \- current font minus
• \(bu bullet

\(sq square

- \(ru rule
V4 \(14 1/4

\(12 1/2
\(34 3/4

fi \(fi fi
fl \(fl fl
ff \(ff ff
ffi \(Fi ffi
fH \(FI fH

0

\(de degree
t \(dg dagger ,

\(fm foot mark
\(ct cent sign
\(rg registered

© \(co copyright

2.23.2 Characters on the Special Font

Many non-ASCII characters and the ASCII characters', ' , _, +, -,
=, and * exist on the special font. The ASCII characters @, #, ",
" ' , <, >, \, {, }, - , ", and _ exist only on the special font and
are printed as a I-em space if that font is not mounted. The fol­
lowing characters exist only on the special font except for the upper
case Greek letter names. These are mapped into upper case English
letters in whatever font is mounted on font position one (default
Roman). The special math plus, minus, and equals are provided to
insulate the appearance of equations from the choice of standard
fonts.

The nroff/troff Reference Manual 2-35

SECTION 2 Formatters

Character Input Character
C'

(glyph) Name Name

+ \(pl math plus
- \(mi math minus
- \(eq math equals
* \(** math star
§ \(sc section
,

\(aa acute accent ,
\(ga grave accent
\(ul underrule

/ \(sl slash (matching backslash)
a \(*a alpha
{3 \(*b beta
7 \(*g gamma
8 \(*d delta
{ \(*e epsilon I~/-- "-,""

~ \(*z zeta
'7 \(*y eta

\
\"--"

0 \(*h theta
t \(*i iota

'" \(*k kappa
A \(*1 lambda
/-l \(*m mu
v \(*n nu
e \(*c xi
0 \(*0 omicron
7r \(*p pi
p \(*r rho
u \(*s sigma
<p \(ts terminal sigma
T \(*t tau
v \(*u upsilon
<P \(*f phi
X \(*x chi
1/J \(*q psi
w \(*w omega
A \(*A Alpha

I

\,

B \(*B Beta
r \(*G Gamma
A \(*D Delta
E \(*E Epsilon
Z \(*Z Zeta
H \(*Y Eta
e \(*H Theta
I \(*1 Iota
K \(*K Kappa
A \(*L Lambda
M \(*M Mu
N \(*N Nu
... \(*0 Xi
0 \(*0 Omicron
II \(*p Pi
P \(*R Rho

2-36 The nroff/troff Reference Manual

SECTION 2 Formatters

Character Input Character
(glyph) Name Name

E \(*S Sigma
T \(*T Tau
T \(*U Upsilon
<I> \(*F Phi
X \(*X Chi
\II \(*Q Psi
11 \(*W Omega

i \(sr square root
\(rn root en extender

> \(>= - >=
< \«= <= -
- \(== identically equal
r-.J \C = approx =
r-.J \(ap approximates
:F \(!= not equal
-+ \(-> right arrow
+- \«- left arrow
t \(ua up arrow
! \(da down arrow
X \(mu multiply

\(di divide
± \(+- plus-minus
U \(cu cup (union)
n \(ca cap (intersection)
C \(sb subset of o
:::> \(sp superset of
C \(ib improper subset
:::> \(ip improper superset
00 \(if infinity
a \(pd partial derivative
'V \(gr gradient
..., \(no not

o J \(is integral sign
~ \(pt proportional to
0 \(es empty set
E \(mo member of
I \(br box vertical rule
t \(dd double dagger
=} \(rh right hand
{= \(lh left hand

0 \(bs bell
I \(or or
a \(ci circle

The nroff/troff Reference Manual 2-37

SECTION 2 Formatters

Character Input Character
(glyph) Name ' Name

(\{It left top of big curly bracket
t \{lb left bottom

l \(rt right top
J \(rb right bot

1
\{lk left center of big curly bracket
\(rk right center of big curly bracket
\(bv bold vertical

l \{If left floor (left bottom of big square bracket)
J \{rf right floor (right bottom)

f \{lc left ceiling (left top)
\(rc right ceiling (right top)

2.24 SUMMARY OF REQUESTS

Values separated by ";" are for nroff and troff respectively. The
following designation are used in the Notes column.

B Request normally causes a break.

D Mode or relevant parameters associated with current diversion
level.

E

o
p

Relevant parameters are a part of the current environment.

Must stay in effect until logical output.

Mode must be still or again in effect at the time of physical
output.

The characters v,p,m,u are default scale indicators; if not specified,
scale indicators are ignored.

2.24.1 Font and Character Size Control

Request Initial II No
Form Value Argument Notes Explanation

. ps±N 10 point previous E Point size; also \s±N .

.ss N 12/36 em ignored E Space-character size set to
N/36 em.

.csFNM off P Constant character space
(width) mode (font F) .

. bd F N off P Embolden font F by N-l
units.

.bd S F Noff P Embolden Special Font
when current font is F.

.ft F Roman previous E Change to font F = x, xx,
or 1-4. Also \fx, \f(xx, \fN.

.fp N F R,I,B,S ignored Font named F mounted on
physical position 1 <N<4.

2-38 The nroff/troff Reference Manual

\
,~ ".

o

o

0

o

o

SECTION 2 Formatters

2.24.2 Page Control

Request
Form
• pl±N
.bp ±N

Initial
Value
11 in
N 1

If No
Argument Notes Explanation
11 in v Page length .

B:j:,v Eject current page; next
page number N .

. pn ±N N 1 ignored Next page number N .

. po ±N 0; 26/27 inprevious v Page offset .
• ne N N 1 V D,v Need Nvertical space (V =

.mkR none

.rt ±N none

internal D
vertical spacing).
Mark current vertical place
in register R.

internal D,v Return (upward only) to
marked vertical place.

2.24.3 Text Filling, Adjusting, and Centering

Request Initial If No
Form Value Argument Notes Explanation
. br B Break .
.n fill B,E Fill output lines.
.nf fill B,E No filling or adjusting of

output lines.
.ad c adj,both adjust E Adjust output lines with

mode c.
.na adjust E No output line adjusting.
.ce N off N 1 B,E Center following N input

text lines.

2.24.4 Vertical Spacing

Request
Form
.vs N

.Is N

.sp N

. sv N

.os

• ns
.rs

Initial
Value
12pts

N 1

space

If No
Argument Notes Explanation
previous E,p Vertical base line spacing

(V).
previous E Output N-l Vs after each

text out put line.
N 1 V B,v Space vertical distance N in

either direction.
N 1 V v Save vertical distance N .

Output saved vertical dis­
tance.

D Turn no-space mode on .
D Restore spacing; turn no­

space mode off.

The nroff/troff Reference Manual 2-39

SECTION 2 Formatters

2.24.5 Line Length and Indenting

Request
Form
.ll ±N
.in ±N
• ti ±N

Initial
Value
6.5 in
N 0

II No
Argument Notes Explanation
previous E,m Line length.
previous B,E,m Indent.
ignored B,E,m Temporary indent .

2.24.6 Macros, Strings, Diversions, Traps

Request Initial II No
Form Value Argument Notes Explanation
.de xx yy - .yy= •• Define or redefine macro xx;

end at call of yy.
• am xx yy- . yy= •• Append to a macro .
.ds xx st - ignored Define a string xx containing

st.
.as xx st - ignored Append st to string xx.
.rm xx ignored Remove request, macro, or

string.
.rn xx yy - ignored Rename request, macro, or

string xx to yy.
.di xx end D Divert output to macro xx.
.da xx end D Divert and append to xx.
.wh Nxx - v Set location trap; negative is

w.r.t. page bottom.
• ch xx N - v Change trap location .
.dt N xx - off D,v Set a diversion trap.
.it N xx off E Set an input-line count trap.
. em xx none none End macro is xx .

2.24.7 Number Registers

Request Initial
Form Value
.nr R ±N M

.af R c arabic

• rr R

2-40

II No
Argument Notes Explanation

u Define and set number regis­
ter R; auto-increment by M.
Assign format to register R
(c=l, i, I, a, A).
Remove register R .

The nroff/troff Reference Manual

~-,

(
\..._ .. /

("
\ '--. .

c

o

o

o

o

o

SECTION 2 Formatters

2.24.8 Tabs, Leaders, and Fields

Request Initial
Form Value
• ta Nt ... 0.8; 0.5in

• tc c none
• Ic c
.fc a b off

If No
Argument Notes Explanation
none E,m Tab settings; left type,

unless t-R(right),
C(centered).

none E Tab repetition character .
none E Leader repetition character .
off Set field delimiter a and pad

character b.

2.24.9 110 Conventions and Translations

Request
Form
• ec c
.eo

• Ig N
.ul N

.cu N

.uf F

. cc c

.c2 c

Initial
Value

\ --/

on

-; on
off

off

Italic

If No
Argument Notes Explanation
\ Set escape character .

Turn off escape character
mechanism .

on Ligature mode on if N>O.
N 1 E Underline (italicize in troft')

N input lines.
N 1 E Continuous underline in

nroft'; like ul in troft'.
Italic Underline font set to F (to

be switched to by ul).
E Set control character to c .
E Set nobreak control charac­

ter to c .
• tr abcd none o Translate a to b, etc. on

output.

2.24.10 Hyphenation

Request
Form
. nh
. hy N
.hc c

Initial If No
Value Argument Notes Explanation
hyphenate - E No hyphenation .
hyphenate hyphenate E Hyphenate; N = mode .
\ % \ % E Hyphenation indicator char­

acter c .
. hw wordl ... ignored Exception words.

The nroft'/troft'Reference Manual 2-41

SECTION 2 Formatters

2.24.11 Three Part Titles

Request
Form
• tl ' l' c' r'

Initial
Value

.pc c %
• It ±N 6.5 in

II No
Argument Notes Explanation

Three-part title .
off Page number character.
previous E,m Length of title .

2.24.12 Output Line Numbering

Request Initial
Form Value
.nm ±N M 81

• nn N

II No
Argument Notes Explanation
off E Number mode on or off, set

parameters.
N 1 E Do not number next Nlines .

2.24.13 Conditional Acceptance of Input

Request Initial II No
Form Value Argument Notes Explanation
.if c anything

.if ! c anything

.if N anything u

• if !N anything u

.if ' stringl ' string2' anything

.if !' stringl' string2' anything -

.ie c anything u

• el anything

2-42

If condition c true, accept
anything as input,
for multi-line use \ {any­
thing\}.
If condition c false, accept
anything.
If expression N > 0, accept
anything .
If expression N < 0, accept
anything.
If stringl identical to
string2, accept anything.
If stringl not identical to
string2, accept anything.
If portion of if-else; all
above forms (like if).
Else portion of if-else .

The nroff/troff Reference Manual

('"
,_ ... _-,/

o

o

o

o

o

SECTION 2 Formatters

2.24.14 Environment Switching

Request
Form
.ev N

Initial
Value
N 0

II No
Argument Notes Explanation
previous Environment switched (push

down).

2.24.15 Insertions from the Standard Input

Request
Form
• rd p
. ex

Initial
Value

II No
Argument Notes Explanation
p-BEL Read insertion .

Exit from nroft'/t r oft' .

2.24.16 Input/Output File Switching

Request
Form
• so file
.nx file

Initial
Value

eof
.pi program

II No
Argument Notes Explanation

Switch source file (push down) .
Next file.

Pipe output to program
(nroft' only).

2.24.17 Miscellaneous Requests

Request Initial
Form Value
.mc eN -

.tm string-

• ig yy
.pm t

. n

II No
Argument Notes Explanation
off E,m Set margin character c and

separation N.
new line Print string on terminal

(UNIX standard message out­
put) .

. YY=.. Ignore till call of yy.
all Print macro names and

sizes;
if t present, print only total
of sizes.

B Flush output buffer .

The nroft'/troft' Reference Manual 2-43

SECTION 2 Formatters

2.25 SUMMARY OF ESCAPE SEQUENCES

E8eape
Sequence

\\
\e
\'
\'
\­
\.

\(space)
\0
\ \A
\.
\!
\"

\$N
\%
\{xx

*x, *{xx
\a

\b' abc ... '
\e
\d

\Ix, \f{ xx, \IN
\h' N'

\kz
\1' Nc'
\L' Nc'

\nx,\n{xx
\0' abc ... '

\p
\r

\sN, \s±N
\t
\u

\v' N'
\w'dring'

\x' N'
\ze
\{
\}

\(newline)
\X

Meaning

\ (to prevent or delay the interpretation of \)
Printable version of the c.rrent escape character.
, (acute accent); equivalent to \{aa
, (grave accent); equivalent to \{ga
- Minus sign in the current font
Period (dot) (see de)
Unpaddable space-size space character
Digit width space
1/6 em narrow space character (zero width in Droft')
1/12 em half-narrow space character (zero width in nroft')
Non-printing, zero width character
Transparent line indicator
Beginning of comment
Interpolate argument I~N~9
Default optional hyphenation' character
Character named %x

Interpolate string % or x%

Non-interpreted leader character
Bracket building function
Interrupt text processing
Forward (down) 1/2 em vertical motion (1/2 line in nroff)
Change to font named x or xx, or position N
Local horizontal motion; move right N (negative left)
Mark horizontal input place in register x
Horizontal line drawing function (optionally with c)
Vertical line drawing function (optionally with e)
Interpolate number register x or %%

Overstrike characters a, b, c, ...
Break and spread output line
Reverse 1 em vertical motion (reverse line in nroft')
Point-size change function
Non-interpreted horizontal tab
Reverse (up) 1/2 em vertical motion (1/2 line in nroff)
Local vertical motion; move down N (negative up)
Interpolate width of 8tring
Extra line-space function (negative before, p08itive after)
Print c with zero width (without spacing)
Begin conditional input
End conditional input
Concealed (ignored) newline
X any character not listed above

Note: The escape sequences \ \, \., \", \$, \ *, \a, \n, \ t, and
\(newline) are interpreted in copy mode.

2-44 The nroif/troif Reference Manual

,---"

"

"

o

0

o

o

SECTION 2 Formatters

2.26 SUMMARY OF PRE-DEFINED GENERAL
NUMBER REGISTERS

Regiater
Name Deacription

%
ct
dl
dn
dw
dy
hp
In
mo
nl
sb
st
yr

Character type (set by width function).
Width (maximum) of last completed diversion.
Height (vertical size) of last completed diversion.
Current day of the week (1-7).
Current day of the month (1-31).
Current horizontal place on input line.
Output line number.
Current month (1-12).
Vertical position of last printed text baseline.
Depth of string below base line (generated by width function).
Height of string above base line (generated by width function).
Last two digits of current year.

2.27 SUMMARY OF PRE-DEFINED READ-ONLY
NUMBER REGISTERS

Regiater
Name

.$
.A
. H
. T
. v
. a
• c

DeacriLtion
Numb~r of arguments available at the current macro level.
Set to 1 in troif, if -a option used; always 1 in nroif .
Available horizontal resolution in basic units .
Set to 1 in nroif, if - T option used; always 0 in troif .
Available vertical resolution in basic units .
Post-line extra line-space most recently utilized B\x' N' .
Number of linea read from current input file .

• d
.f
. h

Current vertical place in current diversion; equal to nl, if no diversion .
Current font as physical quadrant (1-4)'-

. i
• 1
• n
• 0

. p
• s
. t
• u
• v
• w
• x
• y
• z

Text baseline high-water mark on current page or diversion .
Current indent .
Current line length .
Length of text portion on previous output line .
Current page offset .
Current page length .
Current point size .
Distance to the next trap .
Equal to 1 in fill mode and 0 in nofill mode .
Current vertical line spacing .
Width of previous character .
Reserved version-dependent register .
Reserved version-dependent register .
Name of current diversion .

The nroif/troif Reference Manual 2-45

1-
\
''----/.

o

o

o

o

o

SECTION 2 Formatters

Chapter 3: The -ms Macro Package

3.1 INTRODUCTION

The -IDS macros were developed at Bell Telephone Laboratories for
the purpose of formatting a variety of papers and memoranda. The
package was further enhanced at University of California at Berke­
ley. The bsd4.2 version of DOMAIN/IX includes both the "old" and
"new" versions of -IDS. The sys5 version of DOMAIN/IX includes
only the "old" -IDS.

The new -ms macros have been slightly revised and rearranged.
As a result, they can be read by the computer in about half the
time required by previous versions of -IDS. This means that output
will begin to appear sooner, especially when a small file is being
processed. The old version of -IDS is still available to DOMAIN/IX
bsd4.2 users. It resides in the file /usr/libftmacftmac.os and can
be invoked by including the flag -mos on the n/trofl' command
line.

In the new version, several bugs have been fixed, including a prob­
lem with the .1 C macro, minor difficulties with boxed text, a break
induced by .EQ before initialization, the failure to set tab stops in
displays, and several bothersome errors in the refer macros. Mac­
ros used only at Bell Laboratories have been removed. There are a
few extensions to previous -IDS macros, and a number of new mac­
ros, but all the documented -IDS macros still work exactly as they
did before, and have the same names as before. Output produced
with -IDS should look like output produced with -mos

The -IDS macros, like all trofl' macro packages, provide higher-level
commands than those provided by "plain" troff. If you are new to
the subject of macros, we suggest that you also consider the other
macro packages (-me, included in the bsd4.2 environment, and
-mm, a version of which is included with the sys5 environment; see
Chapters 4 and 5 of this section). Each package has its own
strengths and weaknesses. One will probably appear best-suited to
your own needs.

3.2 COVER SHEETS AND FmST PAGES

The -ms package has several "canned" formats, all developed at
either Bell Telephone Labs or Berkeley . You may use these formats
if you wish, or ask your system administrator to develop new ones
that suit the needs of your site. In general, the first line of a docu­
ment specifies the format of the first page. For example, if the first

The -IDS macros 3-1

SEOTION 2 Formatters

line is ".RP", the document will have a cover sheet suitable for a
Bell Telephone Labs Released Paper format.

In general -IDS is arranged so that only one form of a document
need be stored, containing all information; the first command gives
the format, and items unnecessary for that format are ignored.

3.3 PARAGRAPHS

The .PP macro should precede each paragraph. It produces indent­
ing and extra space, and also initializes various number registers
used internally by -IDS. You should always be sure to have a .PP
command (or its variants, such as .LP) near the start of your docu­
ment.

If you want a non-indented paragraph, use the .LP macro instead.
The paragraph spacing can be changed. See the comments under
"Registers" below.

3.4 PAGE HEADINGS

The -IDS macros, by default, will print a page heading containing a
page number (if greater than 1). A default page footer is provided
only in nroil', where the date is used. You can make minor adjust­
ments to the page headings/footings by redefining the strings LH,
OH, and RH which are the left, center and right portions of the
page headings, respectively; and the strings LF, OF, and RF, which
are the left, center and right portions of the page footer. For more
complex formats, the user can redefine the macros PT and BT,
which are invoked respectively at the top and bottom of each page.
The margins (taken from registers lIM: and FM for the top and bot­
tom margin respectively) are normally 1 inch; the page
header/footer are in the middle of that space. The user who
redefines these macros should be careful not to change parameters
such as point size or font without later resetting them to default
values.

3.5 MULTI-COLUMN FORMATS

If you place the command ".20" in your document, the document
will be printed in double column format beginning at that point.
This feature is not too useful in computer terminal output, but is
often desirable on the typesetter. The command" .10" will go back
to one-column format and also skip to a new page. The" .20"
command is actually a special case of the command

.MO [column width [gutter width]]

which makes multiple columns with the specified column and gutter
width; as many columns as will fit across the page are used. Thus,

3-2 The -IDS macros

o

o

o

o

o

SECTION 2 Formatters

any reasonable number of columns-per-page can be printed. When­
ever the number of columns is changed (except going from full
width to some larger number of columns), a new page is started.

3.6 HEADINGS

There are two commands that produce special headings. The

.NH

macro produces automatically-numbered section headings (1, 2, 3,
...). The heading title will be set in boldface. For example,

.NH
Care and Feeding of Managers

produces

1. Care and Feeding of Managers

Alternatively,

.SH
Care and Feeding of Directors

will print the heading with no number added:

Care and Feeding of Directors

Every section heading, of either type, should be followed by a para­
graph beginning with .PP or .LP, indicating the end of the heading.
Headings may contain more than one line of text.

The .NH command also supports mor.e complex numbering schemes.
If a numeric argument is given, it is taken to be a "level" number
and an appropriate sub-section number is generated. Larger level
numbers indicate deeper sub-sections, as in this example:

.NH
Erie-Lackawanna
.NH 2
Morris and Essex Division
.NH 3
Gladstone Branch
.NH 3
Montclair Branch
.NH 2
Boonton Line

generates:

The -IDS macros 3-3

SECTION 2

1. Erie-Lackawanna

1.1. Morris and Essex Division

1.1.1. Gladstone Branch

1.1.2. Montclair Branch

1.2. Boonton Line

Formatters

An explicit".NH 0" will reset the nUID bering of level 1 to one, as
here:

.NH 0
Penn Central

which yields

1. Penn Central

3.7 INDENTED PARAGRAPHS

The -InS package allows you to produce paragraphs with hanging
numbers, e.g., references, descriptions, etc. The sequence

.IP [1]
Text for first paragraph, typed normally for as
long as you would like on as many lines as needed .
. IP [2]
Text for second paragraph, ...

produces this kind of output.

[1] Text for first paragraph, typed normally for as long as
you would like on as many lines as needed.

[2] Text for second paragraph, ...

A series of indented paragraphs may be followed by an ordinary
paragraph beginning with .PP or .LP, depending on whether you
wish indenting or not. More sophisticated uses of .IP are also possi­
ble. If the label is omitted, for example, a plain block indent is pro­
duced .

. IP
This material will
just be turned into a
block indent suitable for quotations,
callouts, and similiar things.

will produce

This material will just be turned into a block indent suitable for
quotations, call-outs, and similiar things.

3-4 The -InS macros

C)

o

o

o

o

SECTION 2 Formatters

If a nonstandard amount of indenting is required, it may be
specified after the label (as an integer number of character posi­
tions) and will remain in effect until the next call of .PP or .LP.
Thus, the general form of the .IP command contains two additional
fields: the label and the indenting length. For example,

.IP first: 9
Notice the longer label, requiring larger
indenting for these paragraphs .
. IP second:
And so forth.

produces this:

first: Notice the longer label, requiring larger indenting for
these paragraphs.

second: And so forth.

It is also possible to produce multiple nested indents; the command
.RS indicates that the next .IP starts from the current indentation
level. Each .RE will eat up one level of indenting so you should
balance .RS and .RE commands. The .RS command should be
thought of as "move right" and the .RE command as "move left".
As an example, the input below

.IP 1.
Text Editors
.RS
.IP 1.1.
ed
.IP 1.2 ..
vi
.IP 1.3.
dm editor
.RE
.IP 2.
Text Processors
.RS
.IP 2.1
troff
.IP 2.2
nroff

yields the following output.

The -ms macros 3-5

SECTION 2

1. Text Editors
1.1. ed
1.2. vi
1.3. dm editor

2. Text Processors
2.1. troff
2.2. nroff

Formatters

All of these variations on .LP leave the right margin untouched.
Sometimes, for purposes such as setting off a quotation, a paragraph
indented on both right and left is required.

A single paragraph like this is obtained by preceding it
with .QP. More complicated material (several paragraphs)
should be bracketed with .QS and .QE.

3.8 EMPHASIS

To get Italics (on the typesetter or laser printer) or underlining (on
the terminal), use the .I macro, as shown below .

.I
as much text as you want
can be typed here
.R

The .R macro restores the normal (usually Roman) font. If only
one word is to be Italicized, it may be placed on the same line as
the .I command .

.I word

In this case, no .R is needed to restore the previous font. Boldface
text can be produced by the .B macro .

. B
Text to be set in boldface
goes here
.R
This text is Roman.
You can also set just
.B one
word in boldface.

Text bolded using .B will be underlined on devices that can't pro­
duce bold type.

Type size changes can be specified with the commands .LG (make
larger), .SM (make smaller), and .NL (return to normal size). The
size change is two points; the commands may be repeated for cum u­
lative effect.

3-6 The -IDS macros

o

o

SECTION 2 Formatters

If actual underlining, as opposed to Italicizing, is required on the
typesetter, the command

.UL word

will underline a word.

3.9 FOOTNOTES

Material placed between lines with the commands .FS (footnote)
and .FE (footnote end) will be collected, remembered, and finally
placed at the bottom of the current page .

. FS
This is a footnote
.FE

By default, footnotes are II/12th the length of normal text, but
this can be changed using the FL register (see below).

Footnote numbers are printed by means of a pre-defined string
(\ **), which you invoke separately from .FS and .FE. Each time it
is used, this string increases the footnote number by one, whether
or not you use .FS and .FE in your text. Footnote numbers will be
superscripted on the phototypesetter and on daisy-wheel terminals,
but on low-resolution devices (such as a lineprinter or a CRT), they
will be bracketed. If you use \ ** to indicate numbered footnotes,
then the .FS macro will automatically include the footnote number
at the bottom of the page.

Note: If you never use the "\ **" string, no footnote numbers
will appear anywhere in the text, including the footnote
itself. The output footnotes will look exactly like foot­
notes produced with -mos

If you are using \ ** to number footnotes, but want a particular
footnote to be marked with an asterisk or a dagger, then give that
mark as the first argument to .FS. In the footnote, the dagger will
appear where the footnote number would otherwise appear.

Footnote numbering will be temporarily suspended, because the \ **
string is not used. Instead of a dagger, you could use an asterisk *
or double dagger t, input as \(dd.

This is a footnote

The -ms macros 3-7

SECTION 2 Formatters

3.10 DISPLAYS AND TABLES

To prepare displays (sections of text in which the lines should be
output exactly as typed), enclose the desired lines in the commands
.DS and .DE

.DS
Lines like these that should not be
reformatted must be placed between .DS and .DE
macros .
. DE

By default, lines between .DS and .DE are indented and left­
adjusted. You can also center lines, or retain the left margin.
Lines bracketed by .DS C and .DE commands are centered (and not
rearranged); lines bracketed by .DS Land .DE are left-adjusted, not
indented, and not rearranged. A plain .DS is equivalent to .DS I,
which indents and left-adjusts. Thus,

these lines were preceded by
the .DS C command

whereas

these lines were preceded
by .DS L and followed by
the .DE ·command.

and followed by
the .DE command;

Note that .DS C centers each line; there is a variant .DS B that
makes the display into a left-adjusted block of text, and then
centers that entire block. Normally a display is kept together, on
one page. If you wish to have a long display which may be split
across page boundaries, use .CD, .LD, or .ID in place of the com­
mands .DS C, .DS L, or .DS I respectively. An extra argument to
the .DS I or .DS command is taken as an amount to indent.

3.11 BOXING WORDS OR LINES

To draw rectangular boxes around words, use the .BX command.
The line

.BXword

will print the word "word" in a box, like this.

I word I
The boxes will not be neat on a terminal, and this should not be .
used as a substitute for Italics. Longer pieces of text may be boxed
by enclosing them with .BI and .B2:

3-8 The -ms macros

(
'-..

o

o

o

SECTION 2 Formatters

3.12 KEEPING BLOCKS TOGETHER

If you wish to keep a table or other block of lines together on a
page, there are "keep - release" commands. If a block of lines pre­
ceded by .KS and followed by .KE does not fit on the remainder of
the current page, a new page will be started. Lines bracketed by
.DS and .DE commands are automatically kept together this way.
There is also a "floating" keep. If the block to be kept together is
preceded by .KF instead of .KS and does not fit on the current
page, it will be moved down through the text and output at the top
of the next page. Thus, no large blank space will be introduced in
the document.

3.13 NROFF /T-ROFF REQUESTS

Among the useful requests from the basic formatting programs are
the following. They all work with both typesetter and computer
terminal output:

• . bp - begin new page

• .br - "break", stop running text from line to line.

• .sp n - insert n blank lines.

• .na - don't adjust right margins.

3.14 DATE

By default, documents produced on computer terminals have the
date at the bottom- of each page; documents produced on the
typesetter don't. To force the date, use" .DA". To force no date,
use" .ND". To set an explicit date, add an argument to .DA. for
example

.DA July 4, 1776

This puts the date "July 4, 1776" at the bottom of each page.

3.15 REGISTERS

Certain of the registers used by -IDS can be altered to change
default settings. They should be changed with .nr commands, as
with

.nr PS 9

to make the default point size 9 point. If the effect is needed
immediately, the normal troil' command should be used in addition
to changing the number register.

The table below is a summary of -ms number registers.

The -IDS macros 3-9

SECTION 2 Formatters

Register Defines Takes Default
effect

PS point size next para. 10
VS line spacing next para. 12 pts
LL line length next para. 6' ,
LT title length next para. 6' ,
PD para. spacing next para. 0.3 VS
PI para. indent next para. 5 ens
FL footnote length next FS 11/12 LL
OW column width next 2C 7/15 LL
GW intercolumn gap next 2C 1/15 LL
PO page offset next page 26/27' ,
lIM top margin next page l' ,
FM bottom margin next page l' ,

You may also alter the strings LH, CH, and RH which are the left,
center, and right headings respectively; and similarly LF, CF, and
RF which are strings in the page footer. The page number on out­
put is taken from register PN, to permit changing its output style.
For more complicated headers and footers the macros PT and BT
can be redefined, as explained earlier.

3.16 ACCENTS

To simplify typing certain foreign words, strings representing com­
mon accent marks are defined. There are two types of accent
marks. The "old" marks, used in the -mos package, precede the
letter over which the mark is to appear. The newer (bsd4. 2) marks
follow the letter. The "old" (s1/s5) marks are listed below.

Name I Input I Output
accute accent *' e

,
e

grave accent *'e
,

e
umlaut *:u

..
u

circumflex *"e e
tilde *- n - n
hacek *Oe

v
e

cedilla *,c , c

The new string definitions (enhanced at Berkeley) define quotation
marks and dashes for nroil' and troff. The \ * - string will yield
two hyphens in nroil', but in troil' it will produce an em dash. The
\ *Q and \ *U strings will produce " and " in troil', but " in nroil'.

These strings also add a number of foreign accent marks. All the
older accent marks still work. However, by placing .AM at the
beginning of your document, you can use the enhanced accent
marks instead. Unlike the older -mos accent marks, the accent

3-10 The -ms macros

/--,

\
'-.. ..

"-•...

o

o

o

o

o

SECTION 2 Formatters

strings should come after the letter being accented. Here is a list of
the diacritical marks, with examples of what they look like.

Name I Input I Output
acute accent e\ *, ,

e
grave accent e\ *'

,
e

circumflex 0* ..
.. 0

cedilla c*, , c
tilde n*- n
question *7 J
exclamation *! i
umlaut u*:

..
u

digraph s *8 ~
hacek c*v e
macron a*_ - a
underdot s*. s
o-slash 0*/ ~o
angstrom a*o a
yogh kni\ *3t kni3t
Thorn *(Th p
thorn *(th p
Eth *(D- D
eth *(d- -8
hooked 0 *q 9
ae ligature *(ae re
AE ligature *(Ae IE
oe ligature *(oe re
OE ligature *(Oe ill

To use these new diacritical marks, include the macro

.AM

at the beginning of your file. Without it, some will not print at all,
and others will be placed on the wrong letter.

3.17 PRINTING

After your document is prepared and stored on a file, you can print
it on a terminal with the command

nroft' -IDS file

and you can print it on the typesetter with the command

troft' -IDS file

Many command line options are possible. See the information on
troft' in Chapters 1 and 2 of this section.

In each case, if your document is stored in several files, you may list
all the filenames where we have used file. If equations or tables are
used, eqn and/or tbl must be invoked as preprocessors.

The -IDS macros 3-11

SECTION 2 Formatters

Note: If .2C was used to produce two-column text, pipe the
nroft' output through col before viewing it on an
edit/transcript pad or printing it. You may do this on
the command line, by using the pipe symbol

nroft' -InS file col

or, if you always want the output piped through col,
you may make the first line of the file

.pi /bin/ col

3.18 TYPESETTING MATHEMATICS

If you have to typeset equations or Greek characters, see the infor- .
mation on eqn in Chapter 4 of this section. To aid eqn, -ms pro­
vides definitions of .EQ and .EN that normally center the equation
and set it oft' slightly from the surrounding text. An argument to
.EQ is taken to be an equation number and is placed in the right
margin near the equation. In addition, there are three special argu­
ments to .EQ: the letters C, I, and L indicate centered (default),
indented, and left adjusted equations, respectively. If there is both
a format argument and an equation number, give the format argu­
ment first, as in

.EQ L (1.3a)

for a left-adjusted equation numbered (1.3a).

Similarly, the macros. TS and. TE are defined to separate tables
from text with a little space. A very long table with a heading may
be broken across pages by beginning it with. TS H instead of . TS,
and placing the line . TH in the table data after the heading. If the
table has no heading repeated from page to page, just use the ordi­
nary . TS and . TE macros.

3.19 BIBLIOGRAPHY ENTRIES

The b8d~. 2 version of -InS includes a macro especially for bibliogra­
phy entries, called .XP, which stands for exdented paragraph. It
will exdent the first line of the paragraph by \n(PI units, usually 5n
(the same as the indent for the first line of a .PP). Most bibliogra­
phies are printed this way. Of course, you will have to take care of
Italicizing the book title and journal, and quoting the title of the
journal article. Indentation or exdentation can be changed by set­
ting the value of number register PI.

If you need to produce endnotes rather than footnotes, put the
references in a file of their own. This is similar to what you would
do if you were typing the paper on a conventional typewriter. Note
that you can use automatic footnote numbering without actually

3-12 The -InS macros

o

o

o

SECTION 2 Formatters

having .FS and .FE pairs in your text. If you place footnotes in a
separate file, you can use .IP macros with \ ** as a hanging tag;
this will give you numbers at the left-hand margin. With some
styles of endnotes, you would want to use .PP rather then .IP mac­
ros, and specify \ * * before the reference begins.

3.20 TABLE OF CONTENTS

There are four new macros to help produce a table of contents.
Table of contents entries must be enclosed in .XS and .XE pairs,
with optional JCA macros for additional entries; arguments to .XS
and .xA. specify the page number, to be printed at the right. A
final .PX macro prints out the table of contents. The.xS and .XE
pairs may also be used in the text, after a section header for
instance, in which case page numbers are supplied automatically.
However, most documents that require a table of contents are too
long to produce in one run, which is necessary if this method is to
work. It is recommended that you do a table of contents after
finishing your document. To print out the table of contents, use
the .PX macro; if you forget it, nothing will happen.

It is also possible to produce custom headers and footers that are
different on even and odd pages. The .OH and .EH macros define
odd and even headers, while .OF and .EF define odd and even
footers. Arguments to these four macros are specified as with .tl.
Note that it would be a error to have an apostrophe in the header
text; if you need one, you will have to use a different delimiter
around the left, center, and right portions of the title. You can use
any character as a delimiter, provided it doesn't appear elsewhere in
the argument to .OH, .EH, .OF, or EF.

Both versions of -InS work in conjunction with the tbl, and eqn.
Only the "new" version works well with the refer preprocessor.

Note: In the bsd4.2 version of InS, macros to deal with tables,
equations, and bibliography citations are read in only ~
needed, as are the thesis macros (. TM), the special
accent mark definitions (.AM), table of contents macros
(.XS and .XE), and macros to format the optional cover
page. The code for the -InS package lives in
/ t/,sr / lib / tmac/ tmac. s, and sourced files reside in the

The -InS macros 3-13

SECTION 2 Formatters

directory / 'Usr / lib / ms.

3.21 SUMMARY OF -IDS MACROS

Macros marked with a t exist in -mos only. Macros marked with a
:/: exist in -IDS only.

Name Function Name Function
lC One-column format LG Increase type size
2C Two-column format LP Left-aligned paragraph
AB Begin abstract ND Change or reset date
AE End abstract NH Specify numbered heading
AI Specify author's institution NL Use normal type size
AU Specify author PP Begin paragraph
B Begin boldface R Return to regular font

DA Print date on each page RE To previous relative indent
DE End display RPt BTL released paper format
DS (CD, LD, ID) Start display RS Next relative indent level
EN End equation SH Specify section heading
EQ Begin equation TL Specify title
FE End footnote UL Underline one word
FS Begin footnote
SG Insert signature line
I Begin Italics

IXt ;£ndex Entry
SM Change to smaller type size
IP Begin indented paragraph
KE Release keep
KF Begin floating keep
KS Start keep

3.22 SUMMARY OF -IDS REGISTER NAMES

The following register names' are used by -ms internally. Indepen­
dent use of these names in one's own macros may produce incorrect
output. Note that no lowercase letters are used in any -IDS internal
name.

Number registers used in -ms
: DW GW HM IQ LL NA OJ PO T. TV
#T EF HI HT IR LT NC PD PQ TB VS
IT FL H3 II(KI M:M NF PF PX TD YE
AV FM H4 1M Ll MN NS PI RO TN yy
CW FP H5 IP LE MO 01 PN ST TO ZN

3-14 The -IDS macros

f"
\ '--. ...•.... '

SECTION 2 Formatters

String registers used in -ms , A5 OB DW EZ I KF MR Rl RT TL ,
AB 00 DY FA 11 KQ ND R2 SO TM

A AE OD El FE 12 KS NH R3 SI TQ - AI OF E2 FJ 13 LB NL R4 S2 TS
: AU OH E3 FK 14 LD NP R5 SG TT
, B OM E4 FN 15 LG OD RO SH UL
10 BG OS E5 FO ID LP OK RE 8M WB
2C BT OT EE FQ IE NIE PP RF SN WH
Al 0 D EL FS 1M MF PT RH SY WT
A2 01 DA EM FV IP MH PY RP TA XD
A3 02 DE EN FY IZ MN QF RQ TE XF
A4 OA DS EQ HO KE MO R RS TH Xl(

o

o

C\
I

The -InS macros 3-15

I~
\ ,.

o

n
~J

o

o

o

SECTION 2 Formatters

Chapter 4: The -me Macro Package

4.1 INTRODUCTION

The -me macro package, developed at Berkeley by Eric Allman and
others, has several unique features, the most obvious of which is its
use of lower-case characters in macro names. There are also a
number of macro parameters that may be adjusted.

Note: The -me macros are only available in the bsd./..2 version
of DOMAIN fIX.

In -me, fonts may be set to a font number only. In nroiT, font 8 is
underlined, and is set in bold font in troiT (although font 3, bold in
troif, is not underlined in nroif). Font 0 is no font change; the
font of the surrounding text is used instead. Notice that fonts 0
and 8 are pseudo-fonts; that is, they are simulated by the macros.
This means that although it is legal to set a font register to zero or
eight, it is not legal to use the escape character form (e.g. \f8).

All distances are specified in basic units, so it is nearly always
necessary to use a scaling factor. For example, the request to set
the paragraph indent to eight one-en spaces is

.nr pi 8n

and not

.nr pi 8

which would set the paragraph indent to eight basic units, or about
0.02 inch. Default parameter values ~re given in brackets in the
remainder of this section.

Registers and strings of the form $x may be used in expressions but
should not be changed. Macros of the form $x perform some func­
tion (as described) and may be redefined to change this function.

All names in -me follow a rigid naming convention. You may
define number registers, strings, and macros, provided that you use
single-character uppercase names or double-character names consist­
ing of letters and digits, with at least one uppercase letter! In no
case should special characters be used in user-defined names.

On daisy wheel type printers in twelve pitch, the -rxl flag can be
set to make lines default to one-eighth inch (~he normal spacing for
a newline in twelve-pitch). This is normally too small for easy rea­
dability, so the default is to space one sixth inch.

The -me macros 4-1

SECTION 2 . Formatters

4.2 PARAGRAPHING

These macros are used to begin paragraphs. The standard para­
graph macro is .pp. The others are all variants to be used for spe­
cial purposes.

Note:

.lp

• pp

.ip T I

The first call to one of the paragraphing macros defined
in this section (or to the .sh macro defined in the next
section) initializes the macro processor. After initializa­
tion, you may not use any of the following requests .

. sc

.10

.th

.ac

You should also avoid changing parameters that have a
global effect on the format of the page (e.g., page length
and header/footer margins).

Begin left-justified paragraph. Centering and under­
lining are turned off if they were on, the font is set to
\{pp[l] and the type size is set to \{ps[IOp]. A \{ps
space is inserted before the paragraph [O.35v in troif,
Iv or O.5v in nroif depending on device resolution].
The indent is reset to \{$i[O] plus \{po[O] unless the
paragraph is inside a display. (see .ba). At least the
first two lines of the paragraph are kept together on a
page.

Like .lp, except that it uses \ {pi[5n] units of indent .
This is the standard paragraph macro.

Indented paragraph with hanging tag. The body of
the following paragraph is indented I spaces (or
\n(ii[5n] spaces if I is not specified) more than a non­
indented paragraph (such as with .P) is. The title T
is exdented (opposite of indented). The result is a
paragraph with an even left edge and T printed in the
margin. Any spaces in T must be unpaddable. If T
will not fit in the space provided, .ip will start a new
line .

• np A variant of .ip that numbers paragraphs. Number­
ing is reset after a .lp, .P, or .sh. The current para­
graph number is in \n($p.

4.3 SECTION HEADINGS

Numbered sections are similiar to paragraphs except that a section
number is automatically generated for each one. The section

4-2 The -me macros

C)

o

o

SECTION 2 Formatters

numbers are of the form

1.2.3.

The depth of the section is the count of numbers (separated by
decimal points) in the section number. Unnumbered section head­
ings are similar, except that no number is attached to the heading .

• sh +N Ta bed e f Begin numbered section of depth N. If N is
missing, the current depth (maintained in
the number register \n($O) is used. The
values of the individual parts of the section
number are maintained in \n($l through
\n($6. There is a \n(ss[l v] space before
the section. T is printed as a section title
in font \n(sf[8] and size \n(sp [lOp]. The
"name" of the section may be accessed via
\ *($n. If \n(si is non-zero, the base indent
is set to \n(si times the section depth, and
the section title is exdented. (See .ba.)
Also, an additional indent of \n(so [0] is
added to the section title (but not to the
body of the section). The font is then set
to the paragraph font, so that more infor­
mation may occur on the line with the sec­
tion number and title. The .sh macro
ensures that there is enough room to print
the section head plus the beginning of a
paragraph (about 3 lines total). If argu­
ments a through f are specified, the section
number is set to that number rather than
incremented automatically. If any of argu­
ments a through f is a hyphen, that number
is not reset. 1fT is a single underscore, then
the section depth and numbering is reset,
but the base indent is not reset and nothing
is printed out. This is useful to automati­
cally coordinate section numbers with
chapter numbers .

• sx +N Go to section depth N[-1] but do not print
the number and title, and do not increment
the section number at level N. This has the
effect of starting a new paragraph at level
N.

.uh T

The -me macros

Unnumbered section heading. The title T
is printed with the same rules for spacing,
font, etc., as are used by .sh.

4-3

SECTION 2

.$p T B N

• $0 T B I

. $1 - $6

Formatters

Print section heading. These may be
redefined to get fancier headings. T is the
title provided on the .sh or .uh line; B is
the section number for this section, and N
is the depth of this section. These parame­
ters are not always present; in particular,
.sh passes all three, while .uh passes only
the first. The .sx macro passes all three,
but the first two are null strings. Care
should be taken if this macro is redefined; it
is quite complex and subtle .

This macro is called automatically after
every call to .$p. It is normally undefined,
but may be used to automatically put every
section title into the table of contents or for
some similiar function. T is the section
title for the section title which was just
printed B is the section number. N is the
section depth .

These are traps called just before printing
the section of depth $n. May be defined to
(for example) give variable spacing before
sections. These macros are called from .$p,
so if you redefine that macro you may lose
this feature.

4.4 HEADERS AND FOOTERS

Headers and footers are put at the top and bottom of every page
automatically. They are set in font \n(tf[3] and size \n(tp[lOp].
Each of the definitions apply as of the next page. Three-part titles
must be quoted if there are two blanks adjacent anywhere in the
title or more than eight blanks total.

The spacing of headers and footers is controlled by three number
registers. \n(hm[4v] is the distance from the top of the page to the
top of the header, \n(fm[3v] is the distance from the bottom of the
page to the bottom of the footer, \n(tm[7v] is the distance from
the top of the page to the top of the text, and \n(bm[6v] is the dis­
tance from the bottom of the page to the bottom of the text (nomi­
nal). The macros ml through m4 are also supplied for compatibil­
ity with ROFF documents.

he ' [' m' r'

fo ' l' m' r'

4-4

Define three-part header, to be printed on the
top of every page.

Define footer, to be printed at the bottom of
every page.

The -me macros

('
\",

/ '

SECTION 2 Formatters

0 eh ' I' m' r' Define header, to be printed at the top of every
even-numbered page.

oh'l'm'r' Define header to be printed at the top of every
odd-numbered page.

ef ' [' m' r' Define footer, to be printed at the bottom of
every even-numbered page.

of ' l' m' r' Define footer to be printed at the bottom of
every odd-numbered page.

hx Suppress headers and footers on the next page.

ml+N Set the space between the top of the page and
the header [4v].

0 m2+N Set the space between the header and the first
line of text [2v].

m3+N Set the space between the bottom of the text
and the footer [2v].

m4+N Set the space between the footer and the bot-
tom of the page [4v].

ep End this page, but do not begin the next page.

0 Useful for forcing out footnotes, but otherwise
seldom used. Must be followed by .bp or the
end of input.

$h Called at every page to print the header. May
be redefined to provide fancy (e.g.,multi-line)
headers, but doing so loses the function of the
he, fo, eh, oh, ef, and of requests, as well as
the chapter-style title feature of +c.

0 .$f Print footer; same comments apply as in $h.

$H A normally undefined macro which is called at
the top of each page (after outputting the
header, initial saved floating keeps, etc.); in
other words, this macro is called immediately
before printing text on a page. It can be used
for column headings and the like.

4.5 DISPLA YS

All displays except centered blocks and block quotes are preceded
and followed by an extra \n(bs (same as \n(ps) space. Quote
spacing is stored in a separate register; centered blocks have no
default initial or trailing space. The vertical spacing of all displays

0 except quotes and centered blocks is stored in register \n($R
instead of \n($r .

The -me macros 4-5

SECTION 2

.(1 m f

•)1

.(q

.)q

.B mf

. R

.(z m f

.)z

. (c

4-6

Formatters

Begin list. Lists are single-spaced, unfilled text.
If f is F, the list will be filled. If m is I, the list
will be indented by \n(bi[4n]; if m is M the list
will be indented to the left margin; if m is L
the list is left-justified with respect to the text
(different from M only if the base indent
(stored in \n($i and set with .ba) is not zero);
and if m is C the list will be centered on a
line-by-line basis. The list is set in font \n(df
[0]. Must be matched by a .)1. This macro is
almost like .B except that no attempt is made
to keep the display on one page .

End list.

Begin major quote. Major quotes are single
spaced, filled, moved in from the text on both
sides by \n(qi[4n], preceded and followed by
\n(qs[same as \n(bs] space, and are set in
point size \n(qp [one point smaller than sur­
rounding text] .

End major quote.

Begin block. Blocks are a form of "keep,"
w here the text of a keep is kept together on
one page if possible (keeps are useful for tables
and figures which should not be broken over a
page). If the block will not fit on the current
page, a new page begins, unless that would
leave more than \n(bt[O] white space at the
bottom of the text. If \n(bt is zero, the thres­
hold feature is turned off. Blocks are not filled
unless f is F. A block will be left-justified if m
is L, indented by \n(bi[4n] if m is I or absent,
centered (line-for-line) if m is C, and left­
justified to the margin (not to the base indent)
if m is M. The block is set in font \n(df [0].

End block .

Begin floating keep. Like .B, except that the
keep is floated to the bottom of the page or
the top of the next page. Therefore, its posi­
tion relative to the text changes. The floating
keep is preceded and followed by \n(zs[lv]
space. Also, it defaults to mode M .

End floating keep .

Begin centered block. The next keep is cen­
tered as a block, rather than on a line-by-line

The -me macros

",-- ,

(,

''---

\ '",- '

SECTION 2 Formatters

C) basis as with .(b C This call may be nested
inside keeps .

.)c End centered block.

4.6 ANNOTATIONS

.(d Begin delayed text. Everything in the next
keep is saved for output later with .pd, in a
manner similar to footnotes .

•)d n End delayed text. The delayed text number
register \n($d and the associated string \ *#
are incremented if \ *# has been referenced.

0
.pd Print delayed text. Everything diverted via .(d

is printed and truncated. This might be used
at the end of each chapter to produce endnotes .

• (f Begin footnote. The text of the footnote is
floated to the bottom of the page and set in
font \n(ff[l] and size \n(fp[8p]. Each entry is
preceded by \n(fs[O.2v] space, is indented
\n(fi[3n] on the first line, and is indented

0
\n(fu[O] from the right margin. Footnotes line
up underneath two-column output. If the text
of the footnote will not all fit on one page, it
will be carried over to the next page .

•)f n End footnote. The number register \n($f and
the associated string \ *# are incremented if
they have been referenced .

• $s The macro to output the footnote separator.

C) This macro may be redefined to give other size
lines or other types of separators. Normally, it
draws a l.5i line .

. (x x Begin index entry. Index entries are saved in
the index x [x] until called up with .xp. Each
entry is preceded by a \n(xs[O.2v] space. Each
entry is exdented by \n(xu[O.5i]; this register
tells how far the page number extends into the
right margin .

•)x P A End index entry. The index entry is finished
with a row of dots with A [null] right-justified
on the last line (such as for an author's name),
followed by P [\n%]. If A is specified, P must
also be specified; \n% can be used to print the

0
current page number. If P is an underscore, no
page number and no row of dots will be

The -me macros 4-7

SECTION 2

.xp x

Formatters

printed.

Print index x [x]. The index is formated in the
font, size, and so forth in effect at the time it is
printed, rather than at the time entries were
collected.

4.7 MULTI-COLUMN OUTPUT

.2e +8 N

. 1e

.be

Enter two-column mode. The column separa­
tion is set to +8 [4n, O.5i in ACM mode] (saved
in \n($s). The column width, calculated to fill
the single-column line length with both
columns, is stored in \n($l. The current
column is in \n($e. You can test register
\n($m[l] to see whether you are in single­
column or double-column mode. Actually, the
request enters N [2] columned output.

Revert to single-column mode .

Begin column. This is like .bp except that it
begins a new column on a new page only if
necessary, rather than forcing a whole new
page if there is another column left on the
current page.

4.8 FONTS AND SIZES

.sz +P

.r WX

. i WX

.b WX

.rb W X

4-8

The pointsize is set to P [lOp], and the line
spacing is set proportionally. The ratio of line
spacing to pointsize is stored in \n($r. The
ratio used internally by displays and annota­
tions is stored in \n($R (although this is not
used by .sz).

Set W in roman font, appending X in the pre­
vious font. To append different font requests,
use X = \e. If no parameters, change to
roman font .

Set W in Italics, appending X in the previous
font. If no parameters, change to italic font.
Underlines in nroft'.

Set W in bold font and append X in the previ­
ous font. If no parameters, switch to bold font.
Underlines in nroft'.

Set W in bold font and append X in the previ­
ous font. If no parameters, switch to bold font .
• rb differs from .b in that .rb does not

The -me macros

1'''----''

o

o

o

o

SECTION 2

.u WX

.q WX

.bi W X

. bx WX

Formatters

underline in nroff.

Underline Wand append X. This requests
true underlining, as opposed to .uI, which
changes to the "underline" font (usually italics
in troff). It won't work right if W is spread or
broken (including hyphenated). In other
words, it is safe in nofill mode only.

Quote Wand append X. In nroff, this sur­
rounds W with double quote marks. In troff,
it uses properly-directed (opening and closing)
quotes.

Set Win bold italics and append X. Actually,
sets W in italic and overstrikes once. Under­
lines in nroff .. It won't work right if W is
spread or broken (including hyphenated). In
other words, it is safe in nofill mode only .

Sets W in a box with X appended. Underlines
in nroff. It won't work right if W is spread or
broken (including hyphenated). In other
words, it is safe in nofill mode only.

4.9 ROFF SUPPORT

.ix +N

. bI N

• pa +N

. ro

.ro

. nl

• n2 N

.sk

The -me macros

Indent, no break. Equivalent to 'in N .

Leave N units of contiguous white space. Use
on the next page if not enough room on this
page. Equivalent to a .sp N inside a block.

Equivalent to .bp .

Set page number in Roman numerals .
Equivalent to .ar % i.

Set page number in arabic. Equivalent to .ar
% 1.

Number lines, placing line numbers in margin .

N um ber nnes from N, stop if N = O •

Leave the next output page blank, except for
headers and footers. This is used to leave
space for a full-page diagram to be pasted in
later. To get a partial-page paste-in display,
say .sv N, where N is the amount of space to
leave; this space will be output immediately if
there is room, and will otherwise be output at
the top of the next page. If N is greater than
the amount of available space on an empty

4-9

SECTION 2 Formatters

page, no space will ever be output.

4.10 PREPROCESSOR SUPPORT

.EQ m t Begin equation. The equation is centered if m
is C or omitted, indented \n(bi[4n] if m is I,
and left justified if m is L. T is a title printed
on the right margin next to the equation.

.EN c

.TS h

.TH

.TE

End equation. If c is C, the equation must be
continued by immediately following with
another .EQ, the text of which can be centered
along with this one. Otherwise, the equation is
printed, always on one page, with \n(es [0.5v
in troif, 1 v in nroff] space above and below it.

Table start. Tables are single-spaced and kept
on one page if possible. If you have a table
that will not fit on one page, set h to Hand
follow the header part (to be printed on every
page of the table) with a • TH.

With ends the header portion of the table
(started by .TS H.)

Table end. Note that this table does not float,
in fact, it is not even guaranteed to stay on one
page if you use requests such as .sp intermixed
with the text of the table. If you want it to
float (or if you use requests inside the table),
surround the entire table (including the. TS
and • TE requests) with the requests .(z and
.)z.

4.11 MISCELLANEOUS MACROS

.re

. ba +N

.xl +N

. ll +N

4-10

Reset tabs. Tabs are normally set to every 0.5i
in troff and every 0.8i in nroff.

Set the base indent to +N [0] (saved in \n($i) .
All paragraphs, sections, and displays come out
indented by this amount. Titles and footnotes
are unaffected. The .sh request performs a . ba
request if \n(si[O] is not zero, and sets the base
indent to \n(si*\n($O.

Set the line length to N [6.0i]. This differs
from .11 in that it only affects the current
environment.

Set line length in all environments to N [6.0i] .
This should not be used after output has

The -me macros

c __ -

------ ... __ ._------._----------_.

o

o

o

o

SECTION 2

. hI

.10

Formatters

begun, especially two-column output. The
current line length is stored in \n($1 .

Draws a horizontal line the length of the page .
This is useful inside floating keeps to
differentiate between the text and the figure.

This macro loads those macros that reside in
I 'Usr I lib I mel local. me. These locally-defined
macros should all be of the form .*X, where X
is any letter (upper or lower case) or digit.

4.12 STANDARD PAPERS

.tp

.th

• ++ mH

The -me macros

Begin title page. Spacing at the top of the
page can occur. Headers and footers are
supressed. The page number is not incre­
mented for this page.

Set thesis mode. This defines the modes
acceptable for a doctoral dissertation at Berke­
ley. It double spaces, deijnes the header to be
a single page number, and changes the margins
to be 1.5 inch on the left and one inch on the
top. .++ and .+c should be used with it.
This macro must be stated before initialization,
that is, before the first call to a paragraphing
or .sh macro.

This request defines the section of the paper .
The section type is defined by m. C signifies
the chapter portion of the paper, A signifies
the appendix portion of the paper, and P
means that the material following should be
the preliminary portion (abstract, table of con­
tents, etc.) of the paper. AB signifies the
abstract (numbered independently from 1 in
Arabic numerals), and B signifies the biblio­
graphic portion at the end of the paper. The
variants RC and RA specify renumbering of
pages from 1 at the beginning of each chapter
or appendix, respectively. The H parameter
defines the new header. If there are any spaces
in it, the entire header must be quoted. If you
want the header to have the chapter number in
it, use the string \ \ \ \n(ch. For example, to
number appendices A.l etc., type .++ RA
, , , \ \ \ \n(ch. % '. Each section (chapter,
appendix, etc.) should be preceded by the .+c
request. It is easier when using troff to put

4-11

SECTION 2

.+c T

• $c T

.$C K NT

.ac AN

4-12

Formatters

the front material at the end of the paper, so
that the table of contents can be collected and
output. This material can then be physically
moved to the beginning of the paper as neces­
sary.

Begin chapter with title T. The chapter
number is maintained in \n(ch. This register
is incremented every time .+c is called with a
parameter. The title and chapter number are
printed by .$c. The header is moved to the
footer on the first page of each chapter. If Tis
omitted, .$c is not called. This is useful for
doing your own title page at the beginning of a
paper without a proper title page. .$c calls
.$C as a hook so that chapter titles can be
inserted into a table of contents automatically.
The footnote numbering is reset to one.

Print chapter number (from \n(ch) and T .
This macro can be redefined to your liking.
This macro calls $C, which can be defined to
make index entries and similar items.

This macro is called by .$c. It is normally
undefined, but can be used to automatically
insert things like index entries. K is a key­
word, either "Chapter" or "Appendix"
(depending on the .B .++ mode). N is the
chapter or appendix number, and T is the
chapter or appendix title.

This macro (short for .acm) sets up the nroft'
environment for photo-ready papers as used by
the ACM (Association for Computing
Machinery). This format is 25% larger, and
has no headers or footers. The author's name
A is printed at the bottom of the page (but off
the part which will be printed in the conference
proceedings), together with the current page
number and the total number of pages N. In
addition, this macro loads the file
/usr/libjme/acm.me, which may later be
augmented with other macros useful for print­
ing papers for ACM conferences. It should be
noted that this macro will not work correctly
in troft', since it sets the page length wider
than the physical width of the phototypesetter
roll.

The -me macros

r---'
I
\._--

/
\
"

fj
U

C)

o

SECTION 2 Formatters

4.13 PRE-DEFINED STRINGS

**

*]
*<

*>

*(dw

*(mo

*(td

*(1q

*(rq

*-

Footnote number, actually *[\n($f*] This
macro is incremented after each call to •)f.

Delayed text number. Actually[\n($d].

Superscript. This string gives upward move­
ment and a change to a smaller point size if
possible. Otherwise it prints the left bracket
character. Extra space is left above the line to
allow room for t}le superscript.

End superscript. Inverse to \ * [.

Subscript. Defaults to ' < ' if half-linefeed (and
reverse half-linefeed) not possible. Extra space
is left below the line to allow for the subscript.

Inverse to \ * < .

The day of the week, as a word.

The month, as a word.

Today's date, directly printable. The date is of
the form December 27, 1984. Other forms of
the date can be used by using \n(dy (the day
of the month; for example, 26), *(mo (as
noted above),\n(mo (the same, but as an ordi­
nal number; for example, December is 12). and
\n(yr (the last two digits of the current year).

Left quote marks. Double quote in nroff.

Right quote.

Three-quarter em dash in troff; two hyphens
in nroft".

4.14 SPECIAL CHARACTERS AND MARKS

There are a number of special characters and diacritical marks
(such as accents) available through -me. To reference these charac­
ters, you must call the macro .sc to define the characters before
using them.

.sc

The -me macros

Define special characters and diacritical marks,
as described in the Appendix "Writing Papers
With -me" at the end of this Text Processing
Guide. This macro must be stated before ini­
tialization.

4-13

I

\ .,

o

o

o

SECTION 2 Formatters

Chapter 5: The -mm Macro Package

5.1 INTRODUCTION

The -mm macros included with the sys5 version of DOMAIN/IX are
version 15.110 - the version supplied with UNIX System III Later
versions of -mm have been unbundled from UNIX Systm V and
incorporated into the Documenter's Workbench, which is sold
under separate license. The -mm macros combine some of the
features found in -IDS and -me with a number of unique capabili­
ties that make these macros especially easy to use and modify. The
uses of -mm range from single-page letters to documents of several
hundred pages in length, such as user guides, design proposals, etc.
This chapter is based on the original Bell Labs -mm papers by D.
w. Smith, J. R. Mashey, and others.

Note: The -mm macros are only available in the sys5 version
of DOMAIN/IX.

5.2 CONVENTIONS

Each section of this chapter explains a single facility of -mm. In
general, the earlier a section occurs, the more important it is for
most users to read. Some of the later sections can be completely
ignored if -mm defaults are acceptable. Likewise, each section
progresses from normal-case to special-case facilities. We recom­
mend reading a section in detail only until you have enough infor­
mation to obtain the desired effect, then skimming the rest of it,
since later details may be of use to comparatively few people.

The examples of output in this manual are as produced by troff;
nroff output would, of course, look somewhat different. In those
cases where the behavior of the two formatters is truly different, the
nroff action is described first, with the troft' action following in
parentheses. For example:

The title is underlined (Italic).

means that the title is underlined in nroft' and Italic in troft'.

5.3 INPUT FILE STRUCTURE

The input for a document that is to be formatted with -mm
includes up to four major segments, any of which may be omitted;
if present, they must occur in the following order:

• Preamble- This segment sets the general style and appearance
of a document. You can control page width, margin
justification, numbering styles for headings and lists, page

The -mm macros 5-1

SECTION 2 Formatters

headers and footers, and many other properties of the docu­
ment. You can also add macros or redefine existing ones. You
can omit this segment entirely if you are satisfied with default
values. It produces no actual output, but only performs the
setup for the rest of the document.

• Beginning- This segment includes those items that occur only
once, at the beginning of a document, e.g., title, author's name,
date.

• Body- This segment is the actual text of the document. It may
be as small as a single paragraph, or as large as hundreds of
pages. It may have a hierarchy of headings up to seven levels
deep. Headings are automatically numbered (if desired) and can
be saved to generate the table of contents. Five additional lev­
els of subordination are provided by a set of list macros for
automatic numbering, alphabetic sequencirig, and "marking" of
list items. The body may also contain various types of displays,
tables, figures, references, and footnotes.

• Ending-This segment contains those items that occur once
only, at the end of a document (e.g~, signatures, lists of nota­
tions, etc.). Certain macros may be invoked here to print infor­
mation that is wholly or partially derived from the rest of the
document, such as the table of contents or the cover sheet.

The existence and size of these four segments varies widely among
different document types. Although a· specific item (such as date,
title, author name(s), etc.) may be printed in several different ways
depending on the document type, there is a uniform way of typing
it in.

5.4 FORMATTERS

The term formatter refers to either of the text-formatting programs
nroft' and troff.

Requests are built-in commands recognized by the formatters.
Although you rarely will need to use these requests directly, this
chapter contains references to some of them. For example, the
request:

.sp

inserts a blank line in the output.

Macros are named collections of requests. Each macro is an abbre­
viation for a collection of requests. -mm supplies many macros,
and allows you to define additional ones. Macros and requests
share the same set of names and are used in the same way.

Strings provide character variables, each of which names a string of
characters. Strings are often used in page headers, page footers,
and lists. They share the pool of names used by requests and

5-2 The -mm macros

,r--... ,

I,
'-

o

o

o

o

SECTION 2 Formatters

macros. A string can be given a value via the .ds (define string)
request, and its value can be obtained by referencing its name, pre­
ceded by "\ *" (for I-character names) or "\ *(" (for 2-character
names). For instance, the string DT in -mm normally contains the
current date, so that the input line:

Today is \ *(DT.

resulted, today, in the following output:

Today is May 28, 1985.

The current date can be replaced, e.g.:

.ds DT 05/01/82

or by invoking a macro designed for that purpose.

Number registers fill the role of integer variables. They are used for
flags, for arithmetic, and for automatic numbering. A number
register can be given a value using a .nr request, and may be refer­
enced by preceding its name by "\n" (for I-character names) or
"\n(" (for 2-character names). For example, the following sets the
value of the register d to 1 more than that of the register dd:

.nr d I+\n(dd

For more details on troft', its requests, and its various registers, see
Chapters 1 and 2 of this section.

5.5 INVOKING THE MACROS

This section explains how to access -mm, shows UNIX command
lines appropriate for various output devices, and describes
command-line flags for -mm.

5.5.1 The mm Command

The mm[I] command can be used to print documents using nroft'
and -mm. This command invokes nroft' with the -cm flag. It has
options to specify preprocessing by thl [1] and/or by neqn [1], and
for postprocessing by various output filters. Any arguments or flags
that are not recognized by mm [1], are· passed to nroft' or to -mm,
as appropriate. The following options can occur in any order,
although they must appear before the file name(s).

-e
-t
-c
-E
-y

-12

-T450

The -mm macros

neqn [1] is to be invoked.
t hI [1] is to be invoked.
col [1] is to be invoked.
the "-e" option of nroft' is to be invoked.
-mm (uncompacted macros) is to be used instead
of -cm.
I2-pitch mode is to be used. Be sure that the
pitch switch on the terminal is set to 12.
output is to a DASI450. This is the default

5-3

SECTION 2

-T450-12
-T300
-T300-12
-T300S
-T300S-12
-T4014
-T37
-T382
-T4000A
-TX
-Thp
-T43
-T40/4

-T745

-T2631

-TIp

Formatters

terminal type (unless $TERM is set). It is also
equivalent to -T1620.
output is to a DASI450 in 12-pitch mode.
output is to a DASI300 terminal.
output is to a DASI300 in 12-pitch mode.
output is to a DASI300S.
output is to a DASI300S in 12-pitch mode.
output is to a Tektronix 4014.
output is to a TELETYPE Model 37.
output is to a DTC-382.
output is to a Trendata 4000A.
output is prepared for an EBCDIC lineprinter.
output is to a HP264x (implies -c).
output is to a TELETYPE Model 43 (implies -c).
output is to a TELETYPE Model 40/4 (implies
-c).
output is to a Texas Instrument 700 series ter­
minal (implies -c).
output is prepared for a HP2631 printer (where
-T2631-e and -T2631-c may be used for
expanded and compressed modes, respectively)
(implies -c).
output is to a device with no reverse or partial
line motions or other special features (implies
-c).

Any other -T option given does not produce an error; it is
equivalent to -TIp.

A similar command is available for use with troiT (see mmt[l D.
5.5.2 Using the -cm or -mm Flag

The -mm package can also be invoked by including the -cm or
-mm flag on a troft' or nroft' command line. The -em flag causes
the compacted version of the macros to be loaded. The -mm flag
causes the file /usr/lib/tmac/tmac.m to be read and processed
before any other files. This action defines the -mm macros, sets
default values for various parameters, . and initializes the formatter
to be ready to process the files of input text.

5.5.3 Typical Command Lines

The following prototype command lines are used with the various
options explained in C~apters 1 and 2 of this section .

• Text without tables or equations:

5-4 The -mm macros

o

o

o

SECTION 2

mm [options] filename •••
or nroff [options] -em filename •..

mmt [options] filename •••
or troff [options] -em filename •••

• Text with tables:

mm -t [options] filename , •••
or tbl filename ••• I nroff [options] -em

mmt -t [options] filename •••
or tbl filename ••• I troff [options] -em

• Text with equations:

mm -e [options] filename ••.
or neqn filename ••• I nroff [options] -em

mmt -e [options] filename •••
or eqn filename .•• I troff [options] -em

• Text with both tables and equations:

mm -t -e [options] filename ..•
or tbl filename .•• I neqn I nroff [options] -em

mmt -t -e [options] filename •.•
or tbl filename ••. I eqn I troff [options] -em

Formatters

When formatting a document with nroff, the file should normally
be processed for a known terminal, since output may require
terminal-specific features (e.g., reverse paper motion or half-line
paper motion in both directions). Some commonly available termi­
nal types and the command lines appropriate for them are given
below.

• DASI450 in 100pitch, 6 lines/inch mode, with .75 inch offset, and
a line length of 6.0 inches (60 characters) where this is the
default terminal type so no -T option is needed (unless $TERM
is set to another value):

mm filename ..•
or nroff -T450 -h -em filename •••

• DASI450 in 12-pitch, 6 lines/inch mode, with inches (72 charac­
ters):

mm -12 filename •••
or nroff -T450-12 -h -em filename .•.

or, to increase the line length to 80 characters and decrease the
offset to 3 characters:

mm -12 -rW80 -r03 filename •••
or nroff -T450-12 -rW80 -r03 -h -em filename ...

• Hewlett-Packard HP264x CRT family:

The -mm macros 5-5

SECTION 2 Formatters

mm -Thp filename •••
or nroif -cm filename •.• I coli hp

• Any terminal incapable of reverse paper motion and also lacking
hardware tab stops (Texas Instruments 700 series, etc.):

mm - T7 45 filename •••
or nrofi' -cm filename ..• I col-x

• Versatec raster plotter:

vp [vp-options] "mm -rT2 -c filename .•• "
or vp [vp-options] "nroif -rT2 -cm filename ••• I col"

Of course, ifthl[l] and eqn [1]/neqn [1] are needed, they must be
invoked as shown in the command line prototypes at the beginning
of this section.

If two-column processing is used with nroif, either the -c option
must be specified to nroif or the output must be postprocessed by
col [1]. In the latter case, the -T37 terminal type must be specified
to nroif, the -h option must not be specified, and the output of
col (1) must be processed by the appropriate terminal filter (e.g.,
450 (1)); mm (1) with the -c option handles all this automatically.

Note: Mm(l) uses col (1) automatically for many of the termi­
nal types.

5.5.4 Parameters Set on the Command Line

Mm uses various number registers to hold parameter values that
govern certain aspects of output style. Many of these registers can
be changed within the text files via .nr requests. In addition, some
of these registers can be set from the command line itself, a useful
feature for those parameters that should not be permanently
embedded within the input text itself. If used, these registers (with
the possible exception of the register P-see below) must be set on
the command line (or before the -mm macro definitions are pro­
cessed) and their meanings are:

-rAn for n = 1 has the effect of invoking the .AF macro without
an argument.

-rCn nsets the type of copy (e.g., DRAFT) to be printed at the
bottom of each page.
n = 3 for DRAFT with single-spacing and default paragraph
style.
n = 4 for DRAFT with double-spacing and 10 space para­
graph indent.

-rDl sets debug mode. This flag requests the formatter to
attempt to continue processing even if -mm detects errors
that would otherwise cause termination. It also includes

5-6 The -mm macros

o

o

o

C)

o

SECTION 2 Formatters

some debugging information in the default page header.

-rEn controls the font of the Subject/Date/From fields. If n is 0,
then these fields are bold (default for troff), and if n is 1,
then these fields are regular text (default for nroff).

-rLk sets the length of the physical page to k lines.

Note: For nroif, Ie is an 'Unscaled number representing
lines or character positions; for troff, k must be
scaled.

The default value is 66 lines per page. This parameter is
used, for example, when directing output to a Versatec
printer.

-rNn specifies the page numbering style. When n is 0 (default), all
pages get the (prevailing) header. When n is 1, the page
header replaces the footer on page 1 only. When n is 2, the
page header is omitted from page 1. When n is 3, "section­
page" numbering for footnote and reference numbering in
sections occurs). When n is 4, the default page header is
suppressed; however a user-specified header is not affected.
When n is 5, "section-page" and "section-figure" numbering
occurs.

n
o
1
2
3
4

Page 1
header
header replaces footer
no header

Pages f! ff.
header
header
header

"section-page" as footer
no header no header

unless PH defined
5 same as 3-with "section-figure"

The contents of the prevailing header and footer do not
depend on the value of the number register N; N only con­
trols whether and where the header (and, for N =3 or 5, the
footer) is printed, as well as the page numbering style. In
particular, if the header and footer are null, the value of N is
irrelevant.

-rO k offsets output Ie spaces to the right.

Note: For nroff, these values are unsealed numbers
representing lines or character positions. For
troff, these values must be scaled.

It is helpful for adjusting output positioning on some termi­
nals. The default offset if this register is not set on the com­
mand line is .75 inches.

The -mm macros 5-7

SECTION 2 Formatters

Note: The register name is the capital letter "0", not
the digit zero (0).

-rPn specifies that the pages of the document are to be numbered
starting with n. This register may also be set via a .nr
request in the input text.

-rSn sets the point size and vertical spacing for the document.
The default n is 10, i.e., 10-point type on 12-point leading
(vertical spacing), giving 6 lines per inch. This parameter
applies to troft' only.

-rTn provides register settings for certain devices. If n is 1, then
the line length and page offset are set to 80 and 3, respec­
tively. Setting n to 2 changes the page length to 84 lines per
page and inhibits underlining; it is meant for output sent to
the Versatec raster plotter. The default value for n is o.
This parameter applies to nraft' only.

-rU1 controls underlining of section headings. This flag causes
only letters and digits to be underlined. Otherwise, all char­
acters (including spaces) are underlined. This parameter
applies to nrofl' only.

-rWk page width (Le., line length and title length) is set to k. This
can be used to change the page width from the default value
of 6.0 inches (60 characters in 10 pitch or 72 characters in 12
pitch).

5.5.5 Omission of -em or -mm

If a large number of arguments is required on the command line, it
may be convenient to set up the first (or only) input file of a docu­
ment as follows:

zero or more initializations of registers
listed above
.so /usr/lib/tmac/tmac.m
remainder of text

If you choose this route, do not use either the -cm or -mm com­
mand line flag or the mm/mmt commands. The .so request has the
equivalent effect, but the registers must be initialized before the .so
request. Values in these registers are meaningful only if set before
the macro definitions are processed. This method is used to
"lock"into the input file those parameters that are seldom changed.
For example;

5-8 The -mm macros

I
\

'--

o

o

o

o

-----------------.. --.------~

SECTION 2 Formatters

.nr W 80

.nr 0 10

.nr N 3

.so /usr/lib/tmac/tmac.m

.H 1 " INTRODUCTION"

specifies, for nroft', a line length of 80, a page offset of 10, and
"section-page " numbering.

5.6 FORMATTING CONCEPTS

5.6.1 Basic Terms

Both tro:ff and nroft' normally fill output lines with text from input
lines. The output lines may be justified so that both the left and
right margins are aligned. As the lines are being filled, words may
also be hyphenated, as necessary. It is possible to turn any of these
modes on and off. Turning off fill mode also turns off justification
and hyphenation.

Certain formatting commands (requests and macros) cause the
filling of the current output line to cease, the line (of whatever
length) to be printed, and the subsequent text to begin a new out­
put line. This printing of a partially filled output line is known as
a break. A few formatter requests and most of the -mm macros
cause a break.

While formatter requests can be used with -mm, you need to
understand the consequences and side-effects that each such request
might have. Actually, there is little need to use formatter requests.
The -mm macros handle a variety of formats, and can be used in
all but the most specialized cases. We suggest that you use for­
matter requests only when absolutely necessary.

Note: Each new sentence must begin on a new line.

5.6.2 Arguments and Double Quotes

For any macro call, a null argument is an argument whose width is
zero. Such an argument often has a special meaning; the preferred
form for a null argument is " ".

Note: Omitting an argument is not the same as supplying a
null argument.

Furthermore, omitted arguments can occur only at the end of an
argument list, while null arguments can occur anywhere.

Any macro argument containing ordinary (paddable) spaces must
be enclosed in double quotes ("). Otherwise, it will be treated as

The -mm macros 5-9

SECTION 2 Formatters

several separate arguments.

Note: The double quote (") is a single character that must not
be confused with two apostrophes or acute accents
(, ,), or with two grave accents (' ,).

Double quotes (") are not permitted as part of the value of a macro
argument or of a string that is to be used as a macro argument. If
you must, use two grave accents (' ,) and/or two acute accents
(, ,) instead. This restriction is necessary because macro argu­
ments may be processed (interpreted) an arbitrary number of times.
For example, headings that are first printed in the text may be
(re)printed in the table of contents.

5.6.3 Unpaddable Spaces

When output lines are justified, existing spaces in a line may have
additional spaces appended to them. This may harm the desired
alignment of text. To avoid this problem, it is necessary to be able -
to specify a space that cannot be expanded during justification, -
an "unpaddable" space. There are several ways to accomplish this.

A common mechanism for making a space unpaddable is to precede
the space with a backslash ("\ "). Another way is to specify that
some (seldom used) character is to be translated into a space upon
output. Because this translation occurs after justification, the
chosen character may be used anywhere an unpaddable space is
desired. The tilde (-) is often used for this purpose. To use it in
this way, insert the following at the beginning of the document:

.tr -

If a tilde must actually appear in the output, it can be temporarily
"recovered" by inserting:

.tr - -

before the place where it is needed. Its previous usage is restored
by repeating the" .tr - ", but only after a break or after the line
containing the tilde has been forced out. Note that the use of the
tilde in this fashion is not recommended for documents in which the
tilde is used within equations.

5.6.4 Hyphenation

The formatters do not perform hyphenation unless you request it.
Hyphenation can be turned on in the body of the text by specifying:

.nr Hy 1

exactly once at the beginning of the document.

If hyphenation is requested, the formatter will automatically
hyphenate words where it can. You may specify explicit

5-10 The -mm macros

~,
f
I
\
,~

o

o

o

o

o

SECTION 2 Formatters

hyphenation points for a specific occurrence of any word by the use
of a special character known as a hyphenation indicator . You may
also specify hyphenation points for a small (about 128 characters)
list of words.

If the hyphenation indicator (initially, the two-character sequence
"\%") appears at the beginning of a word, the word is not
hyphenated. Alternatively, the hyphenation character can be used
to indicate preferred hyphenation point(s) inside a word. In any
case, all occurrences of the hyphenation indicator disappear on out­
put.

You may specify a different hyphenation indicator:

.HC [hyphenation-indicator]

The circumflex () is often used for this purpose. To do this, insert
the following at the beginning of a document:

.HC

Note: The formatter is always allowed to break a word after a
hyphen or a dash (em dash), and will do so if necessary
whether or not hyphenation is on.

You may supply, via the .hw request, a small list of words with the
proper hyphenation points indicated. For example, to indicate the
proper hyphenation of the word "printout," one may specify:

.hw print-out

5.6.5 Tabs

The MT and CS macros use the formatter's .ta request to set tab
stops, and then restore the default values. Default tabs are every
eight characters in nroff; every inch in troff. You must explicitly
reset tabs if you need other values. A tab character is always inter­
preted with respect to its position on the input line, rather than its
position on the output line. In general, tab characters should
appear only on lines processed in "no-fill" mode.

Also, note that tbl [1] changes tab stops, but does not restore the
default tab settings.

5.6.6 Special Use of the BEL Character

The non-printing character BEL ($07) is used as a delimiter in many
macros where it is necessary to compute the width of an argument
or to delimit arbitrary text, e.g., in headers and footers, and list
marks. That's why BEL characters should not appear in your input
text (especially in arguments to macros).

The -mm macros 5-11

SECTION 2 Formatters

5.6.7 Bullets

A bullet (.) is often obtained on a typewriter terminal by using an
"0" overstruck by a "+". For compatibility with troil', a bullet
string is provided by -mm. Rather than overstriking, use the
sequence:

*(BU

wherever a bullet is desired. Note that the bulleted list (.BL) mac­
ros use this string to automatically generate the bullets for the list
items.

5.6.8 Dashes, Minus Signs, and Hyphens

Troft' has distinct characters for a dash, a minus sign, and a
hyphen, while nroft' does not. Those who intend to use nroft' only
may use the minus sign ("-") for all three.

Those who wish mainly to use troft' should follow the troft' escape
conventions described in Chapters 1 and 2 of this section.

Those who want to use both formatters must take care during text
preparation. Unfortunately, these characters cannot be represented
in a way that is both compatible and convenient. We suggest the
following approach:

Dash Type \ *(EM for each text dash for both nroft' and troft'.

Hyphen

This string generates an em dash (-) in troft' and gen­
erates "--" in nroft'. Note that the dash list (.DL) mac­
ros automatically generate the em dashes for the list
items.

Type "-" and use as is for both formatters. Nroft' will
print it as is, and troft' will print a true hyphen.

Minus Type "\-" for a true minus sign, regardless of formatter.
N roff will effectively ignore the "\" , while troft' will
print a true minus sign.

5.6.D Trademark String

This string (\ *(Tm) places the letters "TM" one-half line above the
text that it follows.

For example,

The UNIX\ *(Tm Operating System is now widely-supported
and running on many types of computing machinery.

yields:

The UNIX™ Operating System is now widely-supported
and running on many types of computing machinery.

5-12 The -mm macros

c'

c

C'

o

o

o

o

o

SECTION 2 Formatters

5.7 PARAGRAPHS AND HEADINGS

This section describes simple paragraphs and section headings.
Additional paragraph and list styles are covered in later sections.

5.7.1 Paragraphs

.P [type]
one or more lines of text.

This macro is used to begin two kinds of paragraphs. In a left­
justified paragraph, the first line begins at the left margin, while in
an indented paragraph, the first line is indented five spaces.

A document's default paragraph style is obtained by specifying
".P" before each paragraph that does not follow a heading. The
default style is controlled by the register Pt. The initial value of
Pt is 0, which always provides left-justified paragraphs. All para­
graphs can be force-indented by inserting the following at the
beginning of the document:

.nr Pt 1

All paragraphs will be indented except after headings, lists, and
displays if the following:

.nr Pt 2

is inserted at the beginning of the document.

The amount a paragraph is indented is contained in the register Pi,
whose default value is 5. To indent paragraphs by, say, 10 spaces,
insert:

.nr Pi 10

at the beginning of the document. Of course, both the Pi and Pt
register values must be greater than zero for any paragraphs to be
indented.

The number register Ps controls the amount of spacing between
paragraphs. By default, Ps is set to 1, yielding one blank space (a
vertical space).

Note: Values that specify indentation must be unsealed and
are treated as "character positions," i.e., as a number of
ens. In troif, an en is the number of points (1 point =
1/72 of an inch) equal to half the current point size. In
nroif, an en is equal to the width of a (fixed-width)
character.

Regardless of the value of Pt, an individual paragraph can be
forced to be left-justified or indented. ".P 0" always forces left
justification; ".P 1" always causes indentation by the amount
specified by the register Pi.

The -mm macros 5-13

SECTION 2 Formatters

If .P occurs inside a list, the indent (if any) of the paragraph is
added to the current list indent.

Numbered paragraphs may be produced by setting the register Np
to 1. This produces paragraphs numbered within first level head­
ings, e.g., 1.01, 1.02, 1.03, 2.01, etc.

A different style of numbered paragraphs is obtained by using the

.nP

macro rather than the .P macro for paragraphs. This produces
paragraphs that are numbered within second level headings and
contain a "double-line indent" in which the text of the second line
is indented to be aligned with the text of the first line so that the
number stands out .

• H 1 "FIRST HEADING"
.H 2 "Second Heading"
.nP
one or more lines of text

5.7.2 Numbered Headings

.H level [heading-text] [heading-suffix]
zero or more lines of text

The .H macro provides seven levels of numbered headings, as illus­
trated by this document. Level 1 is the highest (most major); level
7 the lowest.

The heading-suffix is appended to the heading-text and may be
used for footnote marks which should not appear with the heading
text in the Table of Contents.

Note: The .H macro also performs the function of the .P
macro. If a .P follows a .H, the .P is ignored.

The effect of .H varies according to the level argument. First-level
headings are preceded by two blank lines (one vertical space); all
others are preceded by one blank line (one-half of a vertical space) .

• H 1 heading-text gives a bold heading followed by a single
blank line (one-half of a vertical space). The
following text begins on a new line and is
indented according to the current paragraph
type. Full capital letters should normally be
used to make the heading stand out .

• H 2 heading-text yields a bold heading followed by a single
blank line (one-half of a vertical space). The
following text begins on a new line and is
indented according to the current paragraph
type. Normally, initial capitals are used.

5-14 The -mm macros

\
..... _--

('-"
"'--i

o

o

o

o

SECTION 2 Formatters

.H n heading-text for 3 < n < 7, produces an underlined
(Italic) heading followed by two spaces. The
following text appears on the same line, i.e.,
these are run-in headings.

Appropriate numbering and spacing (horizontal and vertical) occur
even if the heading text is omitted from a .H macro call.

5.7.3 Altering Heading Pre-Space

A first-level heading normally has two blank lines (one vertical
space) preceding it, and all others have one blank line (one-half of a
vertical space). A multi-line heading that would split across a page
break is, instead, automatically moved to the top of the next page.
Every first-level heading may be forced to the top of a new page by
inserting:

.nr Ej 1

at the beginning of the document. Long documents may be made
more manageable if each section starts on a new page. Setting Ej
to a higher value causes the same effect for headings up to that
level, i.e., a page eject occurs if the heading level is less than or
equal toEj.

5.7.4 Heading P ost-Space

Three registers control the appearance of text immediately follow­
ing a .H call. They are Hb (heading break level), H8 (heading space
level), and Hi (post-heading indent).

If the heading level is less than or equal to Hb, a break occurs after
the heading. If the heading level is less than or equal to H8, a
blank line (one-half of a vertical space) is inserted after the heading.
Defaults for Hb and H8 are 2. If a heading level is greater than Hb
and also greater than H8, then the heading (if any) is run into the
following text. These registers permit headings to be separated
from the text in a consistent way throughout a document, while
allowing easy alteration of white space and heading emphasis.

For any stand-alone heading, Le., a heading not run into the follow­
ing text, the alignment of the next line of output is controlled by
the register Hi. If Hi is 0, text is left-justified. If Hi is 1 (the
default value), the text is indented according to the paragraph type
as specified by the register Pt. Finally, if Hi is 2, text is indented
to line up with the first word of the heading itself, so that the head­
ing number stands out more clearly.

For example, to cause a blank line (one-half of a vertical space) to
appear after the first three heading levels, to have no run-in head­
ings, and to force the text following all headings to be left-justified
(regardless of the value of Pt), the following should appear at the
top of the document:

The -mm macros 5-15

SECTION 2

.nr lIs 3

.nr Hb7

.nr Hi 0

5.7.5 Centered Headings

Formatters

The register He can be used to obtain centered headings. A head­
ing is centered if its level is less than or equal to He, and if it is
also stand-alone. He is 0 initially (no centered headings).

5.7.6 Format Control by Heading Level

Any heading that is underlined by nroft' is made Italic by troft'.
The string HF (heading font) contains seven codes that specify the
fonts for heading levels 1-7. The legal codes, their interpretations,
and the defaults for HF are:

Formatter HF Code Default
1 t 9 HF

nroff no underline underline bold 3322222
troff Roman Italic bold 3322222

Thus, levels 1 and 2 are bold; levels 3 through 7 are underlined in
nroft' and Italic in troft'. You may reset HF as desired. Any value
omitted from the rightmost side of the list is taken to be 1. For
example, the following would result in five bold levels and two non­
underlined (roman) levels:

.ds HF 3 3 333

5.7.7 Nroft' Heading Underlining Styles

Nroft' can underline in two ways. The normal style (.ul request) is
to underline only letters and digits. The continuous style (.cu
request) underlines all characters, including spaces. By default,
-mm attempts to use the continuous style on any heading that is to
be underlined and is short enough to fit on a single line. If a head­
ing is to be underlined, but is too long, it is underlined the normal
way (Le., only letters and digits are underlined).

All underlining of headings can be forced to the normal way by
using the -rUI flag when invoking nroft'.

5.7.8 Heading Point Sizes

You may also specify the desired point size for each heading level
with the HP string (for use with troft' only) .

• ds HP [psI] [ps2] [ps3] [ps4] [ps5] [ps6] [ps7]

By default, the text of headings (.H and .HU) is printed in the same
point size as the body except that bold stand-alone headings are
printed in a size one point smaller than the body. The string HP,
similar to the string HF, can be specified to contain up to seven.
values, corresponding to the seven levels of headings. For example:

5-16 The -mm macros

/

o

o

o

o

o

SECTION 2 Formatters

.ds lIP 12 12 10 10 10 10 10

specifies that the first and second level headings are to be printed in
12-point type, with the remainder printed in 10-point. Note that
the specified values may also be relative point-size changes, e.g.:

.ds lIP +2 +2 -1 -1

If absolute point sizes are specified, then those sizes will be used
regardless of the point size of the body of the document. If relative
point sizes are specified, then the point sizes for the headings will be
relative to the point size of the body, even if the latter is changed.

Omitted or zero values imply that the default point size will be
used for the corresponding heading level.

Note: Only the point size of the headings is affected. Specify­
ing a large point size without providing increased verti­
cal spacing (via .HX and/or .HZ) may cause overprint­
ing.

5.7.9 Marking Styles

.Hrv1 [arg1] ••• [arg7]

The registers named Hl through H7 are used as counters for the
seven levels of headings. Their values are normally printed using
Arabic numerals. The.Hrv1 macro (heading mark style) allows this
choice to be overridden, thus providing "outline" and other docu­
ment styles. This macro can have up to seven arguments; each
argument is a string indicating the type of marking to be used.
Legal values and their meanings are shown below; omitted values
are interpreted as 1, while illegal values have no effect.

Value
1

0001

A
a
I

Interpretation
Arabic (default for all levels)
Arabic with enough leading zeroes to get

the specified number of digits
Uppercase alphabetic
Lowercase alphabetic
Uppercase Roman
Lowercase Roman

By default, the complete heading mark for a given level is built by
concatenating the mark for that level to the right of all marks for
all levels of higher value. To inhibit the concatenation of heading
level marks, i.e., to obtain just the current-level mark followed by a
period, set the register Ht (heading-mark type) to 1.

For example, a commonly-used "outline" style is obtained by:

The -mm macros 5-17

SECTION 2

.HMIA1ai

.nr Ht 1

5.7.10 Unnumbered Headings

.HU heading-text

Formatters

.HU is a special case of .H; it is handled in the same way as .H,
except that no heading mark is printed. In order to preserve the
hierarchical structure of headings when .H and .HU calls are inter­
mixed, each .HU heading is considered to exist at the level given by
register Hu, whose initial value is 2. Thus, in the normal case, the
only difference between:

.HU heading-text

and

.H 2 heading-text

is the printing of the heading mark for the latter. Both have the
effect of incrementing the numbering counter for level 2, and reset­
ting to zero the counters for levels 3 through 7. Typically, the
value of Hu should be set to make unnumbered headings (if any) be
the lowest-level headings in a document .

• HU can be especially helpful in setting up Appendices and other
sections that may not fit well into the numbering scheme of the
main body of a document.

5.7.11 Headings and the Table of Contents

The text of headings and their corresponding page numbers can be
automatically collected for a table of contents. This is accom­
plished by doing the following two things:

• specifying in the register Cl what level headings are to be saved
• invoking the • TC macro at the end of the document

Any heading whose level is less than or equal to the value of the
register Cl (contents level) is saved and later displayed in the table
of contents. The default value for Cl is 2, i.e., the first two levels
of headings are saved.

Due to the way the headings are saved, it is possible to exceed the
formatter's storage capacity, particularly when saving many levels
of many headings while also processing displays. If this happens,
the "Out of temp file space" diagnostic will be issued; the only
remedy is to save fewer levels and/or to have fewer words in the
heading text.

5.7.12 Page Numbering Style

By default, pages are numbered sequentially at the top of the page.
For large documents, you may want to use page numbering of the
form section-page, where section is the number of the current

5-18 The -mm macros

r-- ,
\....-./

~.
I

\ ..

o

o

o

o

SECTION 2 Formatters

first-level heading. This page numbering style can be achieved by
specifying the -rN3 or -rN5 flag on the command line. This also
has the effect of setting Ej to 1, i.e., each section begins on a new
page. In this style, the page number is printed at the bottom of the
page, so that the correct section number is printed.

5.7.13 User Exit Macros

Note: This section is intended only for those who are accus­
tomed to writing formatter macros .

• HX dlevel rlevel heading-text
.HY dlevel rlevel heading-text
.HZ dlevel rlevel heading-text

The .HX, .HY, and .HZ macros allow you to obtain a final level of
control over the previously described heading mechanism. -mm
calls but does not define .HX, .HY, and .HZ. They are available for
use as needed in preparing custom heading treatments. The.H
macro invokes .HX shortly before the actual heading text is printed;
it calls .HZ as its last action. After.HX is invoked, the size of the
heading is calculated. This processing causes certain features that
may have been included in .HX, such as .ti, for temporary indent,
to be lost. After the size calculation, .HY is invoked so that the
user may respecify these features. All the default actions occur if
these macros are not defined. If the .HX, .HY, or .HZ are defined
by the user, the user-supplied definition is interpreted at the
appropriate point. These macros can therefore influence the han­
dling of all headings, because the .HU macro is actually a special
case of the .H macro.

If you originally invoked the .H macro, then the derived level
(dlevel) and the real level (rlevel) are both equal to the level given
in the .H invocation. If you originally invoked the .HU macro,
dlevel is equal to the contents of register Hu, and rlevel is o. In
both cases, heading-text is the text of the original invocation.

By the time .H calls .HX, it has already incremented the heading
counter of the specified level, produced blank line(s) (vertical space)
to precede the heading, and accumulated the "heading mark", i.e.,
the string' of digits, letters, and periods needed for anum bered
heading. When.HX is called, all user-accessible registers and
strings can be referenced, as well as the following:

string }O If rlevel is non-zero, this string contains the
"heading mark." Two unpaddable spaces (to
separate the mark from the heading) have been
appended to this string. If rlevel is 0, this string is
null.

The -mm macros 5-19

SECTION 2

register ;0

string }2

register ;3

Formatters

This register indicates the type of spacing that is
to follow the heading. A value of 0 means that
the heading is run-in. A value of 1 means a break
(but no blank line) is to follow the heading. A
value of 2 means that a blank line (one-half of a
vertical space) is to follow the heading.

If register ;0 is 0, this string contains two unpadd­
able spaces that will be used to separate the (run­
in) heading from the following text. If register ;0
is non-zero, this string is null.

, This register contains an adjustment factor for a
.ne request issued before the heading is actually
printed. On entry to .HX, it has the value 3 if
dlevel equals 1, and 1 otherwise. The .ne request
is for the following number of lines: the contents of
the register ;0 taken as blank lines (halves of verti­
cal space) plus the contents of register ;3 as blank
lines (halves of vertical space) plus the number of
lines of the heading.

You may alter the values of }O, }2, and ;9 within .HX as desired.
The following are examples of actions that might be performed by
defining .HX to include the lines shown:

Change first-level heading mark from format n. to n.O:
.if \\$1=1 .ds }O \ \n(Hl.0\ \ (stands for a space)

Separate run-in heading from the text with a period and
two unpaddable spaces:
.if \ \n(;O=O .ds }2 . \ \

Assure that at least 15 lines are left on the page before
printing a first-level heading:
.if \\$1=1 .nr ;3 15-\ \n(;O

Add 3 additional blank lines before each first-level heading:
.if \\$1=1 .sp 3

Indent level 3 run-in headings by 5 spaces:
.if \\$1=3 .ti 5n

If temporary string or macro names are used within .HX, care must
be taken in the choice of their names .

• HY is called after the .ne is issued. Certain features requested in
.HX must be repeated. For example,

.de HY

.if \\$1=3 .ti 5n

5-20 The -mm macros

,
'---

o

o

o

o

SECTION 2 Formatters

.HZ is called at the end of .H to permit user-controlled actions after
the heading is produced. For example, in a large document, sec­
tions may correspond to chapters of a book, and you may want to
change a page header or footer. For example,

.de HZ

.if \\$1=1 .PF " ' , Section \\$3 ' , "

5.7.14 Hints for Large Documents

A large document is often organized into one file per section. If you
do this, use enough digits in the names of these files to accomodate
the maximum number of sections, i.e., use suffix numbers 01
through 20 rather than 1 through 9 and 10 through 20.

If, when formatting individual sections of long documents, you need
to retain the correct section numbers, set register Hl to 1 less than
the number of the section just before the corresponding".H 1" call.
For example, at the beginning of section 5, insert:

.nr HI 4

Note: This practice defeats the automatic (re)numbering of
sections when sections are added or deleted. Be sure to
remove such lines when they are no longer needed.

5.8 LISTS

This section explains how you can use -mm macros to obtain many
different kinds of lists: automatically-numbered and alphabetized
lists, bulletted lists, dash lists, lists with arbitrary marks, and lists
starting with arbitrary strings.

5.8.1 The Parts of a List

All lists are composed of the following parts:

• A list-initialization macro that controls such things as line spac­
ing, indentation, marking with special symbols, and numbering
or alphabetizing.

• One or more List Item (.LI) macros, each followed by the actual
text of the corresponding list item.

• The List End (.LE) macro that terminates the list and restores
the margin(s).

Lists may be nested up to five levels deep. The list-initialization
macro saves the previous list status (indentation, marking style,
etc.); the .LE ma?ro restores it.

With this approach, the format of a list is specified only at the
beginning of that list. In addition, by building on the existing

The -mm macros

---_." ... --_._ .. _ ... __ . __ ... _ ... _._---_._- ---

5-21

SECTION 2 Formatters

structure, you may create your own customized sets of list macros.

5.8.2 Sample Nested Lists

The input for several lists and the corresponding output are shown
below. The.AL and .DL macro calls contained therein are exam­
ples of list-initialization macros. This example will help us to
explain the material in the following sections. Input text:

.ALA

.LI
This is an alphabetized item.
This text shows the alignment of the second line of the item.
The quick brown fox jumped over the lazy dog's back .
• AL
.LI
This is a numbered item.
This text shows the alignment of the second line of the item.
The quick brown fox jumped over the lazy dog's back .
• DL
.LI
This is a dash item.
This text shows the alignment of the second line of the item.
The quick brown fox jumped over the lazy dog's back.
.LI + 1
This is a dash item with a ' 'plus' , as prefix.
This text shows the alignment of the second line of the item.
The quick brown fox jumped over the lazy dog's back .
• LE
.LI
This is numbered item 2 .
• LE
.LI
This is another alphabetized item, B.
This text shows the alignment of the second line of the item.
The quick brown fox jumped over the lazy dog's back .
• LE
.P
This paragraph appears at the left margin.

5-22 The -mm macros

~-

(

\.

o

o

o

o

SECTION 2 Formatters

Output:

A. This is an alphabetized item. This text shows the alignment of the
second line of the item. The quick brown fox jumped over the lazy
dog's back.

1. This is a numbered item. This text shows the alignment of
the second line of the item. The quick brown fox jumped
over the lazy dog's back.

- This is a dash item. This text shows the alignment of the
second line of the item. The quick brown fox jumped over
the lazy dog's back.

+ - This is a dash item with a "plus" as prefix. This text
shows the alignment of the second line of the item. The
quick brown fox jumped over the lazy dog's back.

/

2. This is numbered item 2.

B. This is another alphabetized item, B. This text shows the align­
ment of the second line of the item. The quick brown fox jumped
over the lazy dog's back.

This paragraph appears at the left margin.

5.8.3 Common List Macros

Because all lists share the same overall structure except for the list­
initialization macro, we first discuss the macros common to all lists.

5.8.3.1 List Item

.LI [mark] [1]
one or more lines of text that make up the list item.

The .LI macro is used with all lists. It normally causes the output
of a single blank line (one-half of a vertical space) before its item,
although this may be suppressed. If no arguments are given, it
labels its item with the current mark, which is specified by the most
recent list-initialization macro. If a single argument is given to .LI,
that argument is out put instead of the current mark. If two argu­
ments are given, the first argument becomes a prefix to the current
mark, thus allowing the user to emphasize one or more items in a
list. One unpaddable space is inserted between the prefix and the
mark. For example:

The -mm macros 5-23

SECTION 2

.BL 6

.LI
This is a simple bullet item .
• LI +
This replaces the bullet with a ' 'plus.' ,
.LI + 1
But this uses' 'plus' , as prefix to the bullet .
• LE

yields:

• This is a simple bullet item.

+ This replaces the bullet with a "plus."

+ • But this uses "plus" as prefix to the bullet.

Formatters

Note: The mark must not contain ordinary (paddable) spaces.
Alignment of items will be lost if the right margin is
justified

If the current mark (in the current list) is a null string, and the
first argument of .LI is omitted or null, the first line of the follow­
ing text will be "outdented," starting at the place where the mark
would have started. This format is commonly known as a "hang­
ing" indent.

5.8.3.2 List End

.LE [1]

The List End macro restores the state of the list to that which
existed prior to the most recent list-initialization macro call. If the
optional argument is given, .LE outputs a blank line (one-half of a
vertical space). This option should generally be used only when the
.LE is followed by running text, but not when followed by a macro
that produces blank lines of its own, such as .P, .R, or .LI.

.R and .HU automatically clear all list information, so you may
legally omit the .LE(s) that would normally occur just before either
of these macros, although this practice is not recommended.
(Errors will occur if the list text is separated from the heading at
some later time e.g., by insertion of text.)

5.8~4 List Initialization Macros

These macros are actually implemented as calls to the more primi­
tive .LB macro.

5.8.4.1 Numbered and Alphabetized Lists

.AL [type] [text-indent] [1]

The .AL macro is used to begin sequentially-numbered or alphabet­
ized lists. If there are no arguments, the list is numbered, and text

5-24 The -mm macros

(

... , ..

Cj

o

o

SECTION 2 Formatters

is indented Li, initially 6 ens.

Note: Values that specify indentation must be unscaled and
are treated as "character positions," i.e., as a number of
ens from the indent in force when the .AL is called, thus
leaving room for a space, two digits, a period, and two
spaces before the text.

Spacing at the beginning of the list and between the items can be
suppressed by setting the Ls (list space) register. Ls is set to the
innermost list level for which spacing is done. For example,

.nr Ls 0

specifies that no spacing will occur around any list items. The
default value for Ls is 6 (which is the maximum list nesting level).

The type argument may be given to obtain a different type of
sequencing, and its value should indicate the first element in the
sequence desired, Le., it must be 1, A, a, I, or L If type is omitted
or null, then "1" is assumed. If text-indent is non-null, it is used
as the number of spaces from the current indent to the text, i.e., it
is used instead of Li for this list only. If text-indent is null, then
the value of Li will be used.

If the third argument is given, a blank line (one-half of a vertical
space) will not separate the items in the list. A blank line (one-half
of a vertical space) will occur before the first item, however.

5.8.4.2 Bulletted List

.BL [text-indent] [1]

.BL begins a bulletted list, in which each item is marked by a bullet
(.) followed by one space. If text-indent is non-null, it overrides
the default indentation-the amount of paragraph indentation as
given in the register Pi. In the default case, the text of bullet and
dash lists lines up with the first line of indented paragraphs.

If a second argument is specified, no blank lines will separate the
items in the list.

5.8.4.3 Dashed List

.DL [text-indent] [1]

.DL is identical to .BL, except that a dash is used instead of a bul­
let.

5.8.4.4 Marked List

.ML mark [text-indent] [1]

.ML is much like .BL and .DL, but expects the user to specify an
arbitrary mark, which may consist of more than a single character.

The -mm macros 5-25

SECTION 2 Formatters

Text is indented text-indent spaces if the second argument is not
null; otherwise, the text is indented one more space than the width
of mark. If the third argument is specified, no blank lines will
separate the items in the list.

Note: The mark must not contain ordinary (paddable) spaces.
Alignment of items will be lost if the right margin is
justified.

5.8.4.5 Reference List

.RL [text-indent] [1]

A .RL call begins an automatically-numbered list in which the
numbers are enclosed by square brackets ([]). Text-indent may be
supplied, as for .AL. If omitted or null, it is assumed to be 6, a
convenient value for lists numbered up to gg. If the second argu­
ment is specified, no blank lines will separate the items in the list.

5.8.4.6 Variable-Item List

.VL text-indent [mark-indent] [1]

When a list begins with a .VL, there is effectively no current mark.
It is expected that each .LI will provide its own mark. This form is
typically used to display definitions of terms or phrases. Mark­
indent gives the number of spaces from the current indent to the
beginning of the mark. It defaults to 0 if omitted or null. Text­
indent gives the distance from the current indent to the beginning
of the text. If the third argument is specified, no blank lines will
separate the items in the list. Here is an example of .VL usage:

.tr -

.VL 20 2

.LI mark- 1
Here is a description of mark 1;
, 'mark l' , of the .LI line contains a tilde translated
to an unpaddable space in order to avoid extra spaces between
, , mark' , and ' , l' ' .
• LI second- mark
This is the second mark, also using a tilde translated to an unpaddable space .
• LI third-mark - longer-than - indent:
This item shows the effect of a long mark; one space separates the mark
from the text .
• LI -
This item effectively has no mark because the
tilde following the .LI is translated into a space .
• LE

yields:

5-26 The -mm macros

\.

o

o

o

o

c

SECTION 2 Formatters

mark 1 Here is a description of mark 1; "mark 1" of
the .LI line contains a tilde translated to an
unpaddable space in order to avoid extra
spaces between "mark" and "1".

second mark This is the second mark, also using a tilde
translated to an unpaddable space.

third mark longer than indent:

This item shows the effect of a long mark; one space separates
the mark from the text.

This item effectively has no mark because
the tilde following the .LI is translated into a
space.

The tilde argument on the last .LI above is required; otherwise a
hanging indent would have been produced. A hanging indent is
produced by using .VL and calling .LI with no arguments or with a
null first argument. For example:

.VL 10

.LI
Here is some text that shows a hanging indent.
The first line of text is at the left margin.
The second is indented 10 spaces .
• LE

yields:

Here is some text that shows a hanging indent. The first line of text is at
the left margin. The second is indented 10 spaces.

Note: The mark must not contain ordinary (paddable) spaces.
Alignment of items will be lost if the right margin is
justified

5.8.5 List-Begin Macro and Customized Lists

Note: This section is intended only for those who are accus­
tomed to writing formatter macros .

• LB text-indent mark-indent pad type [mark] [LI-space] [LB-space]

The list-initialization macros described above suffice for almost all
cases. However, experienced macro hands may obtain more control
over the layout of lists by using the primitive list-begin macro .LB,
the starting point for all the other list-initialization macros. Its
arguments are as follows:

The -mm macros 5-27

SECTION 2 Formatters

Text-indent gives the number of spaces that the text is to be
indented from the current indent. Normally, this value is taken
from the register Li for automatic lists and from the register Pi for
bulletted and dashed lists.

The combination of mark-indent and pad determines the placement
of the mark. The mark is placed within an area (called mark area)
that starts mark-indent spaces to the right of the current indent,
and ends where the text begins (Le., ends text-indent spaces to the
right of the current indent).

Note: The mark-indent argument is typically o.

Within the mark area, the mark is left-justified if pad is o. If pad is
n (and n is greater than 0), n blanks are appended to the mark, and
the mark-indent value is ignored. The resulting string immediately
precedes the text. That is, the mark is effectively right-justified
pad spaces immediately to the left of the text.

Type and mark interact to control the type of marking used. If
type is 0, simple marking is performed using the mark character(s)
found in the mark argument. If type is greater than 0, automatic
num bering or alphabetizing is done, and mark is then interpreted as
the first item in the sequence to be used for numbering or alphabet­
izing, i.e., it is chosen from the set (1, A, a, I, O. That is:

Type Mark Result
o omitted hanging indent
o string string is the mark

>0 omitted arabic numbering
> 0 one of: automatic numbering or

1, A, a, I, i alphabetic sequencing

Each non-zero value of type from 1 to 6 selects a different way of
displaying the items. The following table, where x is the generated
number or letter, shows the output appearance for each value of
type:

Note:

5-28

Type Appearance
1 x.
2 x)
3 (x)
4 [x]
5 <x>
6 {x}

The mark must not contain ordinary (paddable) spaces.
Alignment of items will be lost if the right margin is
justified.

The -mm macros

\
'---

~-------­" ,

,
"

o

o

o

o

G

SECTION 2 Formatters

LI-space gives the number of blank lines (halves of a vertical space)
that should be output by each .LI macro in the list. If omitted,
LI-space defaults to 1; the value 0 can be used to obtain compact
lists. If LI-space is greater than 0, the .LI macro issues a .ne
request for two lines just before printing the mark.

LB-space, the number of blank lines (one-half of a vertical space)
to be output by .LB itself, defaults to 0 if omitted.

There are three reasonable combinations of LI-space and LB­
space. The normal case is to set LI-space to 1 and LB-space to 0,
yielding one blank line before each item in the list; such a list is
usually terminated with a ".LE 1" to end the list with a blank line.
In the second case, for a more compact list, set LI-space to 0 and
LB-space to 1, and, again, use" .LE 1" at the end of the list. The
result is a list with one blank line before and after it. If you set
both LI-space and LB-space to 0, and use" .LE" to end the list, a
list with no blank lines will result.

5 .8.6 User-Defined List Structures

If a large document requires complex list structures, it is useful to
be able to define the appearance for each list level only once,
instead of having to define it at the beginning of each list. This
permits consistency of style in a large document. For example, a
generalized list-initialization macro might be defined in such a way
that what it does depends on the list-nesting level in effect at the
time the macro is called. Suppose that levels 1 through 5 of lists
are to have the following appearance:

A.
[1]

•
a)

+
The following code defines a macro (.aL) that always begins a new
list and determines the type of list according to the current list
level. To understand it, you should know that the number register
:g is used by the -mm list macros to determine the current list
level; it is 0 if there is no currently active list. Each call to a list­
initialization macro increments :g, and each .LE call decrements it.

The -mm macros 5-29

SECTION 2

.de aL
, \" register g is used as a local temporary
, \" to save :g before it is changed below
.nr g \ \n(:g
.if \ \ng=O .AL A \" give me an A .
• if \ \ng=l .LB \ \n(Li 0 1 4 \" give me a [1]
.if \ \ng=2 .BL \" give me a bullet
.if \ \ng=3 .LB \ \n(Li 022 a \" give me an a)
.if \ \ng=4 .ML_+ \" give me a +

Formatters

This macro can be used, in conjunction with .LI and .LE, instead of
.AL, .RL, .BL, .LB, and .ML. For example, the following input:

.aL

.LI
first line .
• aL
.LI
second line .
• LE
.LI
third line .
• LE

will yield:

A. first line.

[1] second line.

[2] third line.

There is another approach to lists that is similar to the .H mechan­
ism. The list-initialization, as well as the .LI and the .LE macros
are all included in a single macro. That macro (called .bL below)
requires an argument to tell it what level of item is required; it
adjusts the list level by either beginning a new list or setting the
list level back to a previous value, and then issues a .LI macro call
to produce the item:

5-30 The -mm macros

I
r-,

o

o

o

o

o

SECTION 2 Formatters

.de bL

.ie \ \n(.$.nr g \\$1 \" if there is an argument, that is the level

.el .nr g \ \n(:g \" if no argument, use current level

. \" can't increase level by more than 1

.if\ \ng-\ \n(:g>1 .)D "**ILLEGAL SKIPPING OF LEVEL

.if \ \ng> \ \n(:g \{.aL \ \ng-1 \" if g > :g, begin new list
• nr g \ \n(:g\} \" and reset g to current level (.aL changes g)
.if \ \n(:g> \ \ng .LC \ \ng \" if :g > g, prune back to correct level
, \" if :g = g, stay within current list
.LI \" in all cases, get out an item

For .bL to work, the previous definition of the .aL macro must be
changed to obtain the value of g from its argument, rather than
from :g. Invoking .bL without arguments causes it to stay at the
current list level. The -mm .LC macro (List Clear) removes list
descriptions until the level is less than or equal to that of its argu­
ment. For example, the .H macro includes the call" .LC 0". If
text is to be resumed at the end of a list, insert the call" .LC 0" to
clear out the lists completely. The example below illustrates the
relatively small amount of input needed by this approach. The
input text:

The quick brown fox jumped over the lazy dog's back.
.bL 1

. first line .
• bL 2
second line .
• bL 1
third line .
. bL
fourth line .
• LC 0
fifth line.

yields:

The quick brown fox jumped over thelazy dog's back.

B. first line.

[1] second line.

C. third line.

D. fourth line.
fifth line.

5.9 DISPLAYS

Displays are blocks of text that are to be kept together - not split
across pages. -mm provides two styles of displays: a static (.DS)
style and a floating (.DF) style. In the static style, the display

The -mm macros 5-31

SECTION 2 Formatters

appears in the same relative position in the output text as it does in
the input text; this may result in extra white space at the bottom
of the page if the display is too big to fit there. In the floating
style, the display "floats" through the input text to the top of the
next page if there is not enough room for it on the current page;
thus, the input text that follows a floating display may precede it in
the output text. Since floating displays are kept in a queue, their
relative order is not dist ur bed.

By default, a display is processed in no-fill mode, with single­
spacing, and is not indented from the existing margins. You can
specify indentation or centering, as well as fill-mode processing.

Displays and footnotes may never be nested, in any combination
whatsoever. Although lists are permitted, no headings (.H or .HU)
can occur within displays or footnotes.

5.9.1 Static Displays

.D.S [format] [fill] [rindent]
one or more lines of text
.DE

A static display is started by the .DS macro and terminated by the
.DE macro. With no arguments, .DS will accept the lines of text
exactly as they are typed (no-fill mode) and will not indent them
from the prevailing left margin indentation or from the right mar­
gin. The rindent (right indent) argument is the number of charac­
ters that the line length should be decreased, i.e., an indentation
from the right margin. This number must be unsealed in nroff and
is treated as ens. It may be scaled in troff. Otherwise, it defaults
to ems.

The format argument to .DS is an integer or letter used to control
the left margin indentation and centering with the following mean­
ings:

Code

""
o or L
1 or I
2 or C
30rCB

Meaning
no indent
no indent
indent by standard amount
center each line
center as a block

The Jill argument is also an integer or letter and can have the fol­
lowing meanings:

Code

""
o or N
lor F

Meanin~

no-fill mode
no-fill mode
fill mode

Omitted arguments are taken to be zero.

5-32 The -mm macros

~-,

(
\'-.- .

c

C
' \,

J

o

o

SECTION 2 Formatters

The standard amount of indentation is taken from the register Si,
which is initially set to 5. Thus, by default, the text of an indented
display aligns with the first line of indented paragraphs, whose
indent is contained in the Pi register. Even though their initial
values are the same, these two registers are independent of one
another.

The display format value 3 (CB) centers the entire display as a
block (as opposed to .DS 2 and .DF 2, which center each line indi­
vidually). That is, all the collected lines are left-justified, and,
then, the display is centered, based on the width of the longest line.
This format must be used in order for the eqn [l]/neqn (1) "mark"
and "lineup" feature to work with centered equations.

By default, a blank line (one-half of a vertical space) is placed
before and after static and floating displays. These blank lines
before and after static displays can be inhibited by setting the
register Ds to o.
The following example shows the usage of all three arguments for
displays. This block of text will be filled and indented 5 spaces
from both the left and the right margins (Le., centered) .

• DS IF 5
"We the people of the United States, in order to form a more perfect union,
establish justice, ensure domestic tranquility, provide for the common defense,
and secure the blessings of liberty to ourselves and our posterity,
do ordain and establish this Constitution to the
United States of America."
.DE

5.9.2 Floating Displays

.DF [format] [fill] [rindent]
one or more lines of text
.DE

A floating display begins with a .DF macro and ends with a .DE
macro. The arguments have the same meanings as for .DS, except
that, for floating displays, indent, no indent, and centering are
always calculated with respect to the initial left margin, because the
prevailing indent may change between the time when the formatter
first reads the floating display and the time that the display is
printed. The formatter always adds one blank line (one-half of a
vertical space) before and after a floating display.

The user may exercise great control over the output positioning of
floating displays through the use of two number registers, De and
DI. When a floating display is encountered by nroif or troif, it is
processed and placed onto a queue of displays waiting to be output.
Displays are always removed from the queue and printed in the

The -mm macros 5-33

SECTION 2 Formatters

order that they were entered on the queue, which is the order that
they appeared in the input file. If a new floating display is encoun­
tered and the queue of displays is empty, then the new display is a
candidate for immediate output on the current page. Immediate
output is governed by the size of the display and the setting of the
Df register (see below). The De register (see below) controls
whether or not text will appear on the current page after a floating
display has been produced.

As long as the queue contains one or more displays, new displays
will be automatically entered there, rather than being output.
When a new page is started (or, when in two-column mode, the top
of the second column is started), the next display from the queue
becomes a candidate for output, if the Df register has specified
"top-of-page" output. When a display is output it is also removed
from the queue.

When the end of a section (when using section-page numbering) or
the end of a document is reached, all displays are automatically
removed from the queue and output. This will occur before a .SG,
.CS, or • TC is processed.

A display is said to "fit on the current page" if there is enough
room to contain the entire display on the page, or if the display is
longer than one page in length and less than half of the current
page has been used. Also, note that a wide (full page width)
display will never fit in the second column of a two-column docu­
ment.

The registers, their settings, and their effects are as follows:

Values for De Register
Value Action

0 DEFAULT: No special action occurs.
1 A page eject will always follow the output

of each floating display, so only one floating display
will appear on a page and no text will follow it.

NOTE: For any other values the action performed is
for the value 1.

5-34 The -mm macros

~-"

o

o

o

o

o

SECTION 2 Formatters

Values for DJ Register
Value Action

0 Floating displays will not be output until the end of the section
(when section-page numbering)
or end of document.

1 Output the new floating display on the current page
if there is room, otherwise, hold it until the end of the
section or document.

2 Output exactly one floating display from the queue
at the top of a new page or column (when in two-column mode).

3 Output one floating display on current page if there is room.
Output exactly one floating display at the top of a new page or
column.

4 Output as many displays as will fit (at least
one), starting at the top of a new page or column.
Note that if register De is set to 1,
each display will be followed by a page eject,
causing a new top of page to be reached where at
least one more display will be output.
(This also applies to value 5, below.)

5 DEFAULT:
Output a new floating display on the current page if there is room.
Output at least one, but as many displays as will fit starting at the
top of a new page or column.

NOTE: For any value greater than 5, the action performed is
for the value 5.

The .WC macro may also be used to control handling of displays in
double-column mode and to control the break in the text before
floating displays.

5.g.3 Tables

.TS [H]
global options;
column descriptors.
title lines
[.TH [N]]
data within the table .
• TE

The .TS (table start) and .TE (table end) macros make possible the
use of the tbl(l) processor (see Chapter 5 of this section). They are
used to delimit the text to be examined by tbl[l] as well as to set
proper spacing around the table. The display function and the tbl
delimiting function are independent of one another. To keep a
block that contains any mixture of tables, equations, filled and
unfilled text, and caption lines from being split at a page break, the
• TS-. TE block should be enclosed within a display (.DS-.DE).
Floating tables may be enclosed inside floating displays (.DF -.DE).

The macros. TS and. TE also permit the processing of tables that
extend over several pages. If a table heading is needed for each

The -mm macros 5-35

SECTION 2 Formatters

page of a multi-page table, specify the argument "H" to the. TS
macro as above. Following the options and format information, the
table heading is typed on as many lines as required and followed by
the • TH macro. The. TH macro must occur when ". TS H" is used.
Note that this is not a feature of tbl, but of the macro definitions
provided by -mm.

The table header macro • TH may take as an argument the letter N.
This argument causes the table header to be printed only if it is the
first table header on the page. This option is used when it is neces­
sary to build long tables from smaller. TS- HI. TE segments. For
example,

.TS H
global options;
column descriptors.
Title lines
.TH
data
.TE
.TS H
global options;
column descriptors.
Title lines
.THN
data
.TE

will cause the table heading to appear at the top of the first table
segment, and no heading to appear at the top of the second seg­
ment when both appear on the same page. However, the heading
will still appear at the top of each page of the table. This feature is
used when a single table must be broken into segments because of
table complexity (for example, too many blocks of filled text). If
each segment had its own .TS- HI .TH sequence, each segment
would have its own header. However, if each table segment after
the first uses. TS - HI. TH- N then the table header will only
appear at the beginning of the table and the top of each new page
or column that the table continues onto.

For nroff, the -e option (-E for mm(I) may be used for terminals
that are capable of finer printing resolution. This will cause better
alignment of features such as the lines forming the corner of a box.
Note that -e is not effective with col [1].

5-36 The -mm macros

\
\...... /

o

o

o

o

o

SECTION 2 Formatters

5.9.4 Equations

.DS

.EQ [label]
equation(s)
.EN
.DE

The equation preprocessors eqn[l] and neqn[l] expect to use the
.EQ (equation start) and .EN (equation end) macros as delimiters in
the same way that tbl uses. TS and. TE; however, .EQ and .EN
must occur inside a .DS-.DE pair.

Note: There is an exception to this rule: if .EQ and .EN are
used only to specify the delimiters for in-line equations
or to specify eqn/neqn "defines," .DS and .DE must
not be used. If they are, extra blank lines will appear in
the output.

The .EQ macro takes an argument that will be used as a label for
the equation. By default, the label will appear at the right margin
in the "vertical center" of the general equation. The Eq register
may be set to 1 to change the labeling to the left margin.

The equation will be centered for centered displays; otherwise the
equation will be adjusted to the opposite margin from the label.

5.9.5 Captions

.FG [title] [override] [flag]
• TB [title] [override] [flag]
.EC [title] [override] [flag]
.EX [title] [override] [flag]

The .FG (Figure Title), • TB (Table Title), .EC (Equation Caption)
and .EX (Exhibit Caption) macros are normally used inside .DS-.DE
pairs to automatically number and title figures, tables, and equa­
tions. They use registers Fg, Tb, Ee, and Ex, respectively (see on
-rN5 to reset counters in sections). As an example, the call:

.FG "This is an illustration"

yields:

Figure 1. This is an illustration

• TB replaces "Figure" by "TABLE"; .EC replaces "Figure" by
"Equation", and .EX replaces "Figure" by "Exhibit". Output
is centered if it can fit on a single line; otherwise, all lines but the
first are indented to line up with the first character of the title.
The format of the numbers may be changed using the .af request of
the formatter. The format of the caption may be changed from
"Figure 1. Title" to "Figure 1 - Title'~ by setting the Of register to
1.

The -mm macros 5-37

SECTION 2 Formatters

The override string is used to modify the normal numbering. If
flag is omitted or 0, override is used as a prefix to the number; if
flag is 1, override is used as a suffix; and if flag is 2, override
replaces the number. If -rN5 is given, "section-figure" numbering is
set automatically and the user-specified override string is ignored.

As a matter of style, table headings are usually placed ahead of the
text of the tables, while figure, equation, and exhibit captions usu­
ally occur after the corresponding figures and equations.

5.g.6 List of Figures, Tables, Etc.

You may request that a List of Figures, List of Tables, List of Exhi­
bits, and/or List of Equations be printed after the Table of Con­
tents is printed by setting the number registers Ll, Lt, Lx, and Le
(respectively) to 1. Ll, Lt, and Lx are 1 by default; Le is 0 by
default.

The titles of these Lists may be changed by redefining the following
strings which are shown here with their default values:

.ds Lf LIST OF FIGURES

.ds Lt LIST OF TABLES

.ds Lx LIST OF EXHIBITS

.ds Le LIST OF EQUATIONS

5.10 FOOTNOTES

There are two macros that delimit the text of footnotes, a string
used to automatically number the footnotes, and a macro that
specifies the style of the footnote text.

Note: Footnotes are processed in an environment that is
different from that of the body of the text (see the .ev
request).

5.10.1 Automatic Numbering of Footnotes

Footnotes may be automatically numbered by typing the three
characters "\ *F" immediately after the text to be footnoted,
without any intervening spaces. This will place the next sequential
footnote number (in a smaller point size) a half-line above the text
to be footnoted.

5.10.2 Delimiting Footnote Text

There are two macros that delimit the text of each footnote:

.FS [label]
one or more lines of footnote text
.FE

The .FS (footnote start) marks the beginning of the text of the
footnote, and the .FE marks its end. The label on the .FS, if

5-38 The -mm macros

('
'---

o

o

c)

o

o

SECTION 2 Formatters

present, will be used to mark the footnote text. Otherwise, the
number retrieved from the string F will be used. Note that
automatically-numbered and user-labeled footnotes may be inter­
mixed. If a footnote is labeled (.FS label), the text to be footnoted
must be followed by label, rather than by "\ *F". The text
between .FS and .FE is processed in fill mode. Another .FS, a .DS,
or a .DF are not permitted between the .FS and .FE macros. Only
labeled footnotes may be used with tables. Examples of this
include:

1. Automatically-numbered footnote:

This is the line containing the word\ *F
.FS
This is the text of the footnote.
.FE
to be footnoted.

2. Labelled footnote:

This is a labeled *
.FS *
The footnote is labeled with an asterisk .
• FE
footnote.

The text of the footnote (enclosed within the .FS-.FE pair) should
immediately follow the word to be footnoted in the input text, so
that "\ *F" or label occurs at the end of a line of input and the
next line is the .FS macro call. It is also good practice to append
an unpaddable space to "\ *F" or label when they follow an end-of­
sentence punctuation mark (i.e., period, question mark, exclamation
point).

5.10.3 Format of Footnote Text

.FD [arg] [1]
Within the footnote text, you can control the formatting style by
specifying text hyphenation, right margin justification, and text
indentation, as well as left- or right-justification of the label when
text indenting is used. The .FD macro is invoked to select the
appropriate style. The first argument is a number from the left
column of the following table. The formatting style for each
number is given by the remaining four columns. For further expla­
nation of the first two of these columns, see the definitions of the
.ad, .hy, .na, and .nh requests (Chapter 2).

The -mm macros 5-39

.....•...•.. _-----_ .. _-------------

SECTION 2 Formatters

0 .nh .ad text indent label left-justified
1 .hy .ad " "
2 .nh .na " "
3 .hy .na " "
4 .nh .ad no text indent "
5 .hy .ad " "
6 .nh .na " "
7 .hy .na " "
8 .nh .ad text indent label right-justified
9 .hy .ad " "

10 .nh .na " "
11 .hy .na " "

If the first argument to .FD is out of range, the effect is as though
.FD 0 were specified. If the first argument is omitted or null, the
effect is equivalent to .FD 10 in nroff and to .FD 0 in troff; these
are also the respective initial defaults.

If a second argument is specified, then, whenever a first-level head­
ing is encountered, automatically-numbered footnotes begin again
with 1. This is most useful with the "section-page" page number­
ing scheme. As an example, the input line:

.FD " " 1

maintains the default formatting style and causes footnote numbers
to be reset after each first-level heading.

For long footnotes that continue onto the following page, it is possi­
ble that, if hyphenation is permitted, the last line of the footnote
on the current page will be hyphenated. Except for this case
(which you can avoid by specifying an even argument to .FD),
hyphenation across pages is inhibited by -mm.

Footnotes are separated from the body of the text by a short rule.
Footnotes that continue to the next page are separated from the
body of the text by a full-width rule. In troif, footnotes are set in
type that is two points smaller than the point size used in the body
of the text.

5.10.4 Spacing Between Footnote Entries

Normally, one blank line (a three-point vertical space) separates the
footnotes when more than one occurs on a page. To change this
spacing, set the register Fs to the desired value. For example,

.nr Fs 2

will cause two blank lines (a six-point vertical space) to occur
between footnotes.

5.11 PAGE HEADERS AND FOOTERS

Text that occurs at the top of each page is known as the \ \page
header." Text printed at the bottom of each page is called the

5-40 The -mm macros

c

o

o

o

o

o

SECTION 2 Formatters

\ \page footer." The -mm package allows you to specify a
header /footer that

• is printed on every page

• is printed on every odd-numbered page

• is printed on every even-numbered page
Thus, the page header may have up to two lines of text: the line
that occurs at the top of every page and the line for the even- or
odd-numbered page. The same is true for the page footer.

This section first describes the default appearance of page headers
and page footers, and then the ways of changing them. We use the
term \ \header" (not qualified by \ \even" or \ \odd") to mean the
line of the page header that occurs on every page. We use the term
\ \footer" in the same way.

5.11.1 Default Headers and Footers

By default, each page has a centered page number as the header.
There is no default footer and no even/odd default headers or
footers.

5.11.2 Page Header

.PH [arg]

For this and for the .EH, .OH, .PF, .EF, .OF macros, the argument
is of the form:

" , left-part' center-part' right-part' "

If it is inconvenient to use the apostrophe (,) as the delimiter (Le.,
because it occurs within one of the parts), it may be replaced uni­
formly by any other character. On output, the parts are left­
justified, centered, and right-justified, respectively.

The .PH macro specifies the header that is to appear at the top of
. every page. The initial value is the default centered page number
enclosed by hyphens. The page number contained in the P register
is an Arabic number. The format of the number may be changed
by the .af request.

If debug mode is set using the flag -rD1 on the command line, addi­
tional information, printed at the top left of each page, is included
in the default header. This consists of the sces Release and Level
of -mm (thus identifying the current version), followed by the
current line number within the current input file.

5.11.3 Even-Page Header

.EH [arg]

The .EH macro supplies a line to be printed at the top of each
even-numbered page, immediately following the header. The initial

The -mm macros 5-41

SECTION 2

value is a blank line.

5.11.4 Odd-Page Header

.OR [arg]

This macro is the same as .ER, except that it applies to odd­
numbered pages.

5.11.5 Page Footer

.PF [arg]

Formatters

The .PF macro specifies the line that is to appear at the bottom of
each page. Its initial value is a blank line. If the -rCn flag is
specified on the command line, the type of copy follows the footer
on a separate line. In particular, if -rC3 or -rC4 (DRAFT) is
specified, then, in addition, the footer is initialized to contain the
date, instead of being a blank line.

5.11.6 Even-Page Footer

.EF [arg]

The .EF macro supplies a line to be printed at the bottom of each
even-numbered page, immediately preceding the footer. The initial
value is a blank line.

5.11.7 Odd-Page Footer

.OF [arg]

This macro is the same as .EF, except that it applies to odd­
numbered pages.

5.11.8 Footer on the First Page

By default, the footer is a blank line. If, in the input text, you
specify .PF and/or .OF before the end of the first page of the docu­
ment, then these lines will appear at the bottom of the first page.

If the -rNl flag is specified on the command line, the header (what­
ever its contents) replaces the footer on the first page only.

5.11.9 Section-Page Numbering

Pages can be numbered sequentially within sections. To obtain this
numbering style, specify -rN3 or -rN5 on the command line. In this
case, the default footer is a centered "section-page" number, e.g.,
7-2, and the default page header is blank.

5.11.10 Strings and Registers in Headers/Footers

String and register names may be placed in the arguments to the
header and footer macros. If the value of the string or register is to
be computed when the respective header or footer is printed, the
invocation must be escaped by four (4) backslashes. This is because
the string or register invocation will be processed three times:

5-42 The -mm macros

'.

o

o

o

o

o

SECTION 2 Formatters

• as the argument to the header or footer macro;
• in a formatting request within the header or footer macro;
• in a .tl request during header or footer processing.

For example, the page number register P must be escaped with four
backslashes in order to specify a header in which the page number
is to be printed at the right margin, e.g.,

.PH " , , , Page \ \ \ \nP , "

creates a right-justified header containing the word "Page" followed
by the page number. Similarly, to specify a footer with the
"section-page" style, specify:

.PF " , , , - \ \ \ \ n{Hl-\ \ \ \ nP - ' "

As another example, suppose you have arranged for the string /e to
contain the current section heading which is to be printed at the
bottom of each page. The .PF macro call would then be:

.PF " ' , \ \ \ \ * ([C ' ,,,

If only one or two backslashes had been used, the footer would
print a constant value for /e, namely, its value when the .PF
appeared in the input text.

5.11.11 Header and Footer Example

The following sequence specifies blank lines for the header and
footer lines, page numbers on the outside edge of each page (Le.,
top left margin of even pages and top right margin of odd pages),
and "Revision 3" on the top inside margin of each page:

.PH " "

.PF " "

.EH " , \ \ \ \nP' , Revision 3 ' "

.OH " ' Revision 3' , \ \ \ \nP , "

5.11.12 Generalized Top-of-Page Processing

Note: This section is intended only for those who are experi­
enced in writing formatter macros.

During header processing, -mm invokes two user-definable macros.
One, the • TP macro, is invoked in the environment (see .ev request)
of the header; the other, .PX, is a user-exit macro that is invoked
(without arguments) when the normal environment has been
restored, and with "no-space" mode already in effect.

The effective initial definition of . TP (after the first page of a docu­
ment) is:

The -mm macros 5-43

SECTION 2

.de TP

.sp 3

.tl *(}t

.if e ' tl \ \ *(}e

.if 0 ' tl \ \ * (}o

.sp 2

Formatters

The string } t contains the header, the string } e contains the even­
page header, and the string }o contains the odd-page header, as
defined by the .PH, .ER, and .OR macros, respectively. To obtain
more specialized page titles, the user may redefine the. TP macro to
cause any desired header processing. Note that formatting done
within the. TP macro is processed in an environment different from
that of the body.

For example, to obtain a page header that includes three centered
lines of data, say, a document's number, issue date, and revision
date, one could define. TP as follows:

.de TP

.sp

.ce 3
777-888-999
Iss. 2, AUG 1977
Rev. 7, SEP 1977
.sp

The .PX macro may be used to provide text that is to appear at
the top of each page after the normal header and that may have
tab stops to align it with columns of text in the body of the docu­
ment.

5.11.13 Generalized Bottom-of-Page Processing

• BS
zero or more lines of text
.BE

Lines of text that are specified between the .BS (bottom-block
start) and .BE (bottom-block end) macros will be printed at the
bottom of each page, after the footnotes (if any), but before the
page footer. This block of text is removed by specifying an empty
block, i.e.,

.BS

.BE

5.11.14 Top and Bottom Margins

.VM [top] [bottom]

5-44 The -mm macros

('

\,

"--...

c

o

o

o

o

SECTION 2 Formatters

.VM (Vertical Margin) allows the user to specify extra space at the
top and bottom of the page. This space precedes the page header
and follows the page footer. .VM takes two unscaled arguments
that are treated as v's. For example,

.VM 10 15

adds 10 blank lines to the default top of page margin, and 15 blank
lines to the default bottom of page margin. Both arguments must
be positive (default spacing at the top of the page may be decreased
by re-defining • TP).

5.11.15 Private Documents

.nr Pv value

The word "PRIVATE" may be printed, centered, and underlined
on the second line of a document (preceding the page header). This
is done by setting the Pv register:

Value Meaning
.nr Pv 0 do not print PRIVATE (default)
.nr Pv 1 PRIVATE on first page only
.nr Pv 2 PRIVATE on all pages

If Pv is 2, the user definable. TP may not be used because. Tp· is
used by -mm to print PRIVATE on all pages except the first page
of a memorandum on which • TP is not invoked.

5.12 TABLE OF CONTENTS AND COVER SHEET

The table of contents and the cover sheet for a document are pro­
duced by invoking the • TC and .CS macros, respectively.

These macros should normally appear only once at the end of the
document, after the Signature Block macros. They may occur in
either order.

The table of contents is produced at the end of the document
because the entire document must be processed before the table of
contents can be generated. Similarly, the cover sheet is often not
needed, and is, therefore, produced at the end.

5.12.1 Table of Contents

.TC [slevel] [spacing] [tlevel] [tab] [headl] [head2] [head3] [head4] [head5]

The. TC macro generates a table of contents containing the head-
ings that were saved for the table of contents as determined by the
value of the C1 register. The arguments to • TC control the spacing
before each entry, the placement of the associated page number,
and additional text on the first page of the table of contents before
the word "CONTENTS."

The -mm macros 5-45

SECTION 2 Formatters

Spacing before each entry is controlled by the first two arguments;
headings whose level is less than or equal to slevel will have spac­
ing blank lines (halves of a vertical space) before them. Both slevel
and spacing default to 1. This means that first-level headings are
preceded by one blank line (one-half of a vertical space). Note that
slevel does not control what levels of heading have been saved; the
saving of headings is the function of the Cl register.

The third and fourth arguments control the placement of the page
number for each heading. The page numbers can be justified at the
right margin with either blanks or dots ("leaders") separating the
heading text from the page number, or the page numbers can follow
the heading text. For headings whose level is less than or equal to
tlevel (default 2), the page numbers are justified at the right mar­
gin. In this case, the value of tab determines the character used to
separate the heading text from the page number. If tab is 0 (the
default value), dots (Le., leaders) are used; if tab is greater than 0,
spaces are used. For headings whose level is greater than tlevel,
the page numbers are separated from the heading text by two
spaces (Le., they are "ragged right").

All additional arguments (e.g., headl, head2, etc.), if any, are hor­
izontally centered on the page, and precede the actual table of con­
tents itself.

If the. TC macro is invoked with at most four arguments, then the
user-exit macro. TX is invoked (without arguments) before the
word "CONTENTS" is printed, or the user-exit macro. TY is
invoked and the word "CONTENTS" is not printed. By defining
• TX or • TY and invoking • TC with at most four arguments, the
user can specify what needs to be done at the top of the (first) page
of the table of contents. For example, the following input:

.de TX

.ce 2
Special Application
Message Transmission
.sp 2
.in +lOn
Approved: \1 ' 3i '
.in
.sp

.TC

yields:

5-46 The -mm macros

c

\
..... ,,,

c

o

o

o

SECTION 2 Formatters

Special Application
Message Transmission

Approved: ______________________________ __

CONTENTS

If this macro were defined as • TY rather than • TX, the word
"CONTENTS" would not appear. Defining. TY as an empty macro
will suppress "CONTENTS" with no replacement:

.de TY

By default, the first level headings will appear in the table of con­
tents at the left margin. Subsequent levels will be aligned with the
text of headings at the preceding level. These indentations may be
changed by defining the Ci string which takes a maximum of seven
arguments corresponding to the heading levels. It must be given at
least as many arguments as are set by the Cl register. The argu­
ments must be scaled. For example, with Cl=5,

.ds Ci .25i .5i .75i 1i Ii

or

.ds Ci 0 2n 4n 6n 8n

Two other registers are available to modify the format of the table
of contents, Oc and Cp. By default, table of contents pages will
have lowercase Roman numeral page numbering. If the Oc register
is set to 1, the .TC macro will not print any page number but will
instead reset the P register to 1. In this case, you must supply an
appropriate page footer to replace the page number. Ordinarily,
the same .PF used in the body of the document (e.g., OSDD style)
will be adequate.

The List of Figures, Tables, etc. pages will be produced separately,
unless Cp is set to 1, which 'causes these lists to appear on the same
page as the table of contents.

5.13 REFERENCES

There are two m~cros that delimit the text of references, a string
used to automatically number the references, and an optional macro
to produce reference pages within the document.

5.13.1 Automatic Numbering of References

Automatically numbered references may be obtained by typing
\ *(Rf immediately after the text to be referenced. This places the

The -mm macros 5-47

SECTION 2 Formatters

next sequential reference number (in a smaller point size) enclosed
in brackets a half-line above the text to be referenced.

5.13.2 Delimiting Reference Text

The .RS and .RF macros are used to delimit text for each reference.

A line of text to be referenced. \ *(Rf
.RS [string-name]
reference text
.RF

5.13.3 Subsequent References

.RS takes one argument, a string-name. For example,

.RSAA
reference text
.RF

The string AA is assigned the current reference number. It may be
used later in the document, as the string call, \ *(AA, to reference
text which must be labeled with a prior reference number. The
reference is output enclosed in brackets a half-line above the text to
be referenced. No .RS / .RF is needed for subsequent references.

5.13.4 Reference Page

An automatically generated reference page is produced at the end
of the document before the Table of Contents and the Cover Sheet
are output. The reference page is entitled "References". This page
contains the reference text (RS /RF). The user may change the
Reference Page title by defining the Rp string. For example,

.ds Rp "New Title"

The optional .RP (Reference Page) macro may be used to produce
reference pages anywhere within a document (Le., within heading
sections) .

• RP [argl] [arg2]

These arguments allow the user to control resetting of reference
numbering, and page skipping.

argl Meaning
0 reset reference counter (default)
1 do not reset reference counter
arg2 Meaning

0 cause a following .SK (default)
1 do not cause a following .SK

.RP need not be used unless you wish to produce reference pages

5-48 The -mm macros

(
"

\,

'u

o

o

o

o

SECTION 2 Formatters

elsew here in the document.

5.14 MISCELLANEOUS FEATURES

5.14.1 Bold, Italic, and Roman Type

.B [bold-arg] [previous-font-arg] •••
• 1 [italic-arg] [previous-font-arg] •••
. R

When called without arguments, .B changes the font to bold and .1
changes to underlining (Italic). This condition continues until the
occurrence of a .R, when the regular roman font is restored. Thus,

.1
here is some text.
.R

yields:

here is some text.

If .B or .1 is called with one argument, that argument is printed in
the appropriate font (underlined in nrofT for .1). Then, the previ­
ous font is restored (underlining is turned off in nrofT). If two or
more arguments (maximum 6) are given to a .B or .I, the second
argument is then concatenated to the first with no intervening
space (1/12 space if the first font is Italic), but is printed in the pre­
vious font; the remaining pairs of arguments are similarly alter­
nated. For example,

.1 Italic" text" right -justified

produces:

Italic text right-justified

These macros alternate with the prevailing font at the time they
are invoked. To alternate specific pairs of fonts, the following mac­
ros are available:

.IB

.BI

.IR

.RI

.RB

.BR

Each takes a maximum of 6 arguments and alternates the argu­
ments between the specified fonts.

Note that font changes in headings are handled separately.

IF you are using a terminal that cannot underline, you might wish
to insert:

The -mm macros 5-49

SECTION 2

.rm ul

.rm cu

at the beginning of the document to eliminate all underlining.

5.14.2 Justification of Right Margin

.SA [arg]

Formatters

The .SA macro is used to set right-margin justification for the main
body of text. Two justification flags are used: current and default .
• SA 0 sets both flags to no justification, Le., it acts like the .na
request. .SA 1 is the inverse: it sets both flags to cause
justification, just like the .ad request. However, calling .SA without
an argument causes the current flag to be copied from the default
flag, thus performing either a .na or .ad, depending on the default.
Initially, both flags are set for no justification in nroft' and for
justification in troff.

In general, the request .na can be used to ensure that justification is
turned. To restore justification, use .SA, rather than the .ad
request. That way, justification (or lack thereof) for the remainder
of the text is specified by inserting .SA 0 or .SA 1 onc e at the
beginning of the document.

5.14.3 SCCS Release Identification

The string RE contains the SCCS Release and Level of the current
version of -mm. For example, typing:

This document was processed using version \ *(RE of the macros.

produces:

This document was processed using version 15.110 of the macros.

This information is useful in analyzing suspected bugs in -mm.
The easiest way to have this number appear in your output is to
specify -rDl on the command line, which causes the string RE to be
output as part of the page header {9.2}.

5.14.4 Two-Column Output

Mm can print two columns on a page:

.2C
text and formatting requests (except another .2C)
.IC

The .2C macro begins two-column processing, which continues until
a .IC macro is encountered. In two-column processing, each physi­
cal page is thought of as containing two columnar "pages" of equal
(but smaller) "page" width. Page headers and footers are not
affected by two-column processing. The .2C macro does not "bal­
ance" two-column output.

5-50 The -mm macros

c' '--

o

o

o

(J

SECTION 2 Formatters

It is possible to have full-page width footnotes and displays when in
two column mode, although the default action is for footnotes and
displays to be narrow in two column mode and wide in one column
mode. Footnote and display width is controlled by a macro, .WC
(Width Control), which takes the following arguments:

N Normal default mode (-:-WF, -FF, -WD, FB)
WF Wide Footnotes always (even in

two column mode)
-WF DEFAULT: turn off WF (footnotes follow

column mode,
wide in 10 mode, narrow in 20 mode,
unless FF is set)

FF First Footnote;
all footnotes have the same width as the fird
footnote encountered for that page

-FF DEFAULT: turn off FF (footnote style follows
the settings of WF or -WF)

WD Wide Displays always (even in
two column mode)

- WD DEFAULT: Displays follow whichever column mode
is in effect when the display is encountered

FB DEFAULT: Floating displays cause a break when output
on the current page

-FB Floating displays on current page do not cause a break

For example, .we WD FF will cause all displays to be wide, and
all footnotes on a page to be the same width, while .WC N will
reinstate the default actions. If conflicting settings are given to
.WC the last one is used. That is, .WC WF - WF has the effect of
.WC-WF.

5.14.5 Column Headings

In two-column output, it is sometimes necessary to have headers
over each column, as well as headers over the entire page. This is
accomplished by redefining the. TP macro to provide header lines
both for the entire page and for each of the columns. For example,

The -mm macros 5-51

SECTION 2

.de TP

.sp 2

.tl ' Page \ \nP , OVERALL' ,

.tl ' , TITLE' ,

.sp

.nf

.ta 16C 31R 34 50C 65R
left ® center ® right ® left ® center ® right

Formatters

(w here ® stands for the tab character)
® first column ® ® ® second column

.fi

.sp 2

The above example will produce two lines of page header text plus
two lines of headers over each column. The tab stops are for. a 65-
en overall line length.

5.14.6 Vertical Spacing

.SP [lines]

There are several ways of obtaining vertical spacing, all with
different effects. .

The .sp request spaces the number of lines specified, unless "no
space" (.ns) mode is on, in which case the request is ignored. This
mode is typically set at the end of a page header in order to elim­
inate spacing by a .sp or .bp request that just happens to occur at
the top of a page. This mode can be turned off using the .rs
("restore spacing") request.

The .SP macro is used to avoid the accumulation of vertical space
by successive macro calls. Several .SP calls in a row produce not
the sum of their arguments, but their maximum; i.e., the following
produces only 3 blank lines:

.SP 2

.SP 3

.SP

Many -mm macros utilize .SP for spacing. For example, ".LE 1"
immediately followed by ".P" produces only a single blank line
(one-half of a vertical space) between the end of the list and the fol­
lowing paragraph. An omitted argument defaults to one blank line
(one vertical space). Negative arguments are not permitted. The
argument must be unsealed, but fractional amounts are permitted.
Like .sp, .SP is also inhibited by the .ns request.

5-52 The -mm macros

c·'

\'" .

o

o

o

o

o

SECTION 2 Formatters

5.14.7 Skipping Pages

.SK [pages]

The .SK macro skips pages, but retains the usual header and footer
processing. If pages is omitted, null, or 0, .SK skips to the top of
the next page unless it is currently at the top of a page, in which
case it does nothing. .SK n skips n pages. That is, .SK always
positions the text that follows it at the top of a page, while .SK 1
always leaves one page that is blank except for the header and
footer.

5.14.8 Forcing an Odd Page

.Op

This macro is used to ensure that subsequent output text begins at
the top of an odd-numbered page. If output is currently at the top
of an odd page, no motion takes place. If output is currently on an
even page, text resumes printing at the top of the next page; if out­
put is now on an odd page (but not at the top of the page) one
blank page is produced, and printing resumes on the page after
that.

5.14.9 Setting Point Size and Vertical Spacing

In troif, the default point size (obtained from the register S is 10,
with a vertical spacing of 12 points (Le., 6 lines per inch). The pre­
vailing point size and vertical spacing may be changed by invoking
the .S macro:

.8 [point size] [vertical spacing]

The mnemonics, D for default value, C for current value, and P for
previous value, may be used for both point size and vertical spacing
arguments.

Arguments may be signed or unsigned. If an argument is negative,
the current value is decremented by the specified amount. If the
argument is positive, the current value is incremented by the
specified amount. If an argument is unsigned, it is used as the new
value. .8 without arguments defaults to previous (P). If the first
argument is specified but the second argument (vertical spacing) is
not, then the default (D) value is used. The default value for verti­
cal spacing is always 2p greater than the current point size value
selected.

Note: Footnotes are printed two points smaller than the body
copy point size. An additional vertical spacing of three
points is placed between footnotes.

A null ("") argument for either the first or second argument
defaults to the current (C) value. For example, (where n is a

The -mm macros 5-53

SECTION 2 Formatters

numeric value),

.S - .S P P

.S "" n - .S C n

.S n "" - .S n C

.S n - .s n D

.s "" - .s CD

.S "" "" - .S C C

.S n n - .s n n

If a point size argument is greater than 99, the default point size
(D) 10 is restored. If a vertical spacing argument is greater than 99,
the default vertical spacing (D) +2p is used. For example,

.S 12 111 = .S 12 14

.S 110 =.S 10 12

5.14.10 Producing Accents

The following strings may be used to produce diacritical marks
(accents):

Input Output
Grave accent a*' a
Acute accent a*' a
Circumflex a* a

Tilde n*- n

Cedilla c*, y

Lower-case umlaut a*: a

Upper-case umlaut A*; A

5.14.11 Inserting Text Interactively

.RD [prompt] [diversion] [string]

.RD (ReaD insertion) tells the formatter to stop reading the input
file and, instead, read text from the standard input until two con­
secutive new lines are found. When the newlines are encountered,
the formatter resumes processing the input file at the point where it
had been stopped by .RD .

• RD follows the formatting conventions in effect. Thus, the exam­
ples below assume that the .RD is invoked in no fill mode (.nf).

The first argument is a prompt which will be printed at the termi­
nal. If no prompt is given, .RD prompts with a BEL on terminal
output.

The second argument, a diversion name, allows you to save all text
typed after the prompt. The third argument, a string name, allows
the user to save for later reference the first line following the

5-54 The -mm macros

c

('

/'-"',

(

c

C--"""'" \,
J

o

o

o

o

SECTION 2 Formatters

prompt. For example,

.RD Name aa bb

produces

Name: (user types) J. Jones
16 Elm Rd.,
Piscataway

The diversion aa will contain:

J. Jones
16 Elm Rd.,
Piscataway

The string bb (\ *(bb) contains" J. Jones".

A newline followed by a Control D (EOF) also allows the user to
resume normal output.

5.14.12 Bell Labs Macros

The -mm package includes a number of macros that are used only
at Bell Labs facilities. They produce papers in various Bell Labs
formats, and are not of general interest to other UNIX users.
Included under this heading are

• .TL (Title)

• .AU (Author)

• .TM (A BTL Internal Document Number)

• .OK (Other Keywords)

• .MT (Type of Memorandum)

• .AS (Abstract Start)

• .AE (Abstract End)

These macros are well-known to Bell Labs personnel and will not be
further explained here.

5.14.13 Date and Format Changes

.ND new-date

The .ND macro alters the value of the string DT, which is initially
set to the current date. If you do not reset this string, the current
date will always be interpolated wherever \(DT is placed in an
input file.

The -mm macros 5-55

SECTION 2

5.14.14 "Copy to" and Other Notations

.NS [arg]
zero or more lines of the notation
.NE

Formatters

Various "copy to" notations are obtained through the .NS macro,
which provides for the proper spacing and for breaking the nota­
tions across pages, if necessary.

The codes for arg and the corresponding notations are:

Code Notations
.NS "" Copy to
.NS 0 Copy to
.NS Copy to
.NS 1 Copy (with att.) to
.NS 2 Copy (without att.) to
.NS 3 Att.
.NS 4 Atts.
.NS 5 Ene.
.NS 6 Enes.
.NS 7 Under Separate Cover
.NS 8 Letter to
.NS 9 Memorandum to
.NS " dring" Copy (3tring) to

If arg consists of more than one character, it is placed within
parentheses between the words "Copy" and "to." For example,

.NS "with att. 1 only"

will generate "Copy (with att. 1 only) to" as the notation. More
than one notation may be specified before the .NE occurs, because a
.NS macro terminates the preceding notation, if any. For example,

.NS 4
Attachment I-List of register names
Attachment 2-List of string and macro names
.NS 1
R. M. Mottola
.NS 2
J. R. Reilly
R. M. Horton
.NE

would be formatted as:

5-56 The -mm macros

/~"

"",-- .. .'

c

o

o

o

o

o

SECTION 2 Formatters

Atts.
Attachment I-List of register names
Attachment 2-List of string and macro names

Copy (with att.) to
R. M. Mottola

Copy (without att.) to
J. R. Reilly
R. M. Horton

5.14.15 Approval Signature Line

.AV approver's-name

The .A V macro may be used after the last notation block to
automatically generate a line with spaces for the approval signature
and date. For example,

.AV "Jane Doe"

produces:

APPROVED:

Jane Doe Date

5.14.16 Forcing a One-Page Letter

To force an increase in the page length (so that a letter or memo
can be made to fit on a single page), use the -rLn option, e.g. -rLgO.
This has the effect of making the formatter believe that the page is
gO lines long, and that therefore it has more room than usual to
place the signature or the notations. This will only work for a
single-page letter or memo.

5.15 ERRORS AND DEBUGGING

5.15.1 Error Terminations

When a macro discovers an error, the following actions occur:

• A break occurs.

• To avoid confusion regarding the location of the error, the for­
matter output buffer (which may contain some text) is printed.

• A short message is printed giving the name of the macro that
found the error, the type of error, and the approximate line
number (in the current input file) of the last proces~ed input
line.

• Processing terminates, unless the register D has a positive value.
In the latter case, processing continues even though the output

The -mm macros 5-57

SECTION 2 Formatters

is guaranteed to be garbled from that point on.

Note: The error message is written on the transcript pad of
the window in which troff is running. If you are using
an output filter, the message may be garbled by being
intermixed with text held in that filter's output buffer.
If either tbl or n/eqn or both are being used, and if the
-olist option of the formatter causes the last page of the
document not to be printed, a harmless "broken pipe"
message results.

5.15.2 Disappearance of Output

This usually occurs because of an unclosed diversion (e.g., missing
.FE or .DE). Fortunately, the macros that use diversions are care­
ful about it, and they check to make sure that illegal nestings do
not occur. If any message is issued about a missing .DE or .FE, the
appropriate action is to search backwards from the termination
point looking for the corresponding .DS, .DF, or .FS.

The following command:

grep -n " \ .[EDFT] [EFNQS]" files •••

prints all the .DS, .DF, .DE, .FS, .FE, • TS, . TE, .EQ, and .EN
macros found in files ••• , each preceded by its file name and the line
number in that file. This listing can be used to check for illegal
nesting and/or omission of these macros.

5.15.3 MM Error Messages

Each -mm error message consists of a standard part followed by a
variable part. The standard part is of the form:

ERROR:input line n :

The variable part consists of a descriptive message, usually begin­
ning with a macro name. The variable parts are listed below in
alphabetical order by macro name, each with a more complete
explanation:

AL:bad arg:value The argument to the .AL macro is not one
of 1, A, a, I, or L The incorrect argument is
shown as value.

CS:cover sheet too long The text of the cover sheet is too long to fit
on one page. The abstract should be
reduced or the indent of the abstract should
be decreased.

DS:too many displays More than 26 floating displays are active at
once, Le., have been accumulated but not
yet output.

5-58 The -mm macros

c

c

/~--,

I
'I
''-- .

c'

o

o

o

o

o

SECTION 2 Formatters

DS:missing FE

DS:missing DE

A display starts inside a footnote. The
likely cause is the omission (or misspelling)
of a .FE to end a previous footnote •

• DS or .DF occurs within a display, i.e., a
.DE has been omitted or mistyped.

DE:no DS or DF active .DE has been encountered but there has not
been a previous .DS or .DF to match it .

FE:no FS

FS:missing FE

FS:missing DE

H:bad arg:value

H:missing FE

H:missing DE

H:missing arg

HU :missing arg

LB:missing arg(s)

• FE has been encountered with no previous
.FS to match it.

A previous .FS was not matched by a clos­
ing .FE, i.e., an attempt is being made to
begin a footnote inside another one.

A footnote starts inside a display, i.e., a .DS
or .DF occurs without a matching .DE.

The first argument to .H must be a single
digit from 1 to 7, but value has been sup­
plied instead.

A heading macro (.H or .HU) occurs inside a
footnote.

A heading macro (.H or .HU) occurs inside a
display .

• H needs at least 1 argument.

.HU needs 1 argument.

.LB requires at least 4 arguments.

LB:too many nested lists Another list was started when there were
already 6 active lists.

LE:mismatched

LI:no lists active

ML:missing arg

ND:missing arg

SA:bad arg:value

The -mm macros

.LE has occurred without a previous .LB or
other list-initialization macro. Although
this is not a fatal error, the message is
issued because there almost certainly exists
some problem in the preceding text .

• LI occurs without a preceding list­
initialization macro. The latter has prob­
ably been omitted, or has been separated
from the .LI by an intervening .H or .HU .

• ML requires at least 1 argument.

.ND requires 1 argument.

The argument to .SA (if any) must be
either 0 or 1. The incorrect argument is
shown as value.

5-59

SECTION 2

SG:missing DE

SG:missing FE

SG:no authors

.SG occurs inside a display.

.SG occurs inside a footnote.

.SG occurs without any previous .AU
macro(s).

VL:missing arg .VL requires at least 1 argument.

5.15.4 Formatter Error Messages

Formatters

Most messages issued by the formatter are self-explanatory. Those
error messages over which you may have some control are listed
below. Any other error messages should be reported to your system
administrator.

"Cannot do ev" is caused by (a) setting a page width that' is nega­
tive or extremely short, (b) setting a page length that is nega­
tive or extremely short, (c) reprocessing a macro package
(e.g., requesting, via .so a macro package that was also
requested from the command line), and (d) requesting the -sl
option to troff on a document that is longer than ten pages.

"Cannot execute filename " is given by the .! request if it cannot
find the filename.

"Cannot open filename " is issued if one of the files in the list of
files to be processed cannot be opened.

"Exception word list full" indicates that too many words have been
specified in the hyphenation exception list (via .hw requests).

"Line overflow" means that the output line being generated was too
long for the formatter's line buffer. The excess was discarded.
See the "Word overflow" message below.

"Non-existent font type" means that a request has been made to
mount an unknown font.

"Non-existent macro file" means that the requested macro package
does not exist.

"Non-existent terminal type" means that the terminal options refer
to an unknown terminal type.

"Out of temp file space" means that additional temporary space for
macro definitions, diversions, etc. cannot be allocated. This
message often occurs because of unclosed diversions (missing
.FE or .DE), unclosed macro definitions (e.g., missing" •• "), or
a huge table of contents.

"Too many page numbers" is issued when the list of pages specified
to the formatter -0 option is too long.

"Too many string/macro names" is issued when the pool of string
and macro names is full. Unneeded strings and macros can be

5-60 The -mm macros

,/- "
I

_--'

('
I

"---

C)

o

o

o

o

SECTION 2 Formatters

deleted using the .rm request.

"Too many number registers" means that the pool of number regis­
ter names is full. Unneeded registers can be deleted by using
the .rr request.

"Word overflow" means that a word being generated exceeded the
formatter's word buffer. The excess characters were dis­
carded. A likely cause for this and for the "Line overflow"
message above are very long lines or words generated through
the misuse of \ c or of the .cu request, or very long equations
produced by eqn (1)/neqn (1).

5.16 EXTENDING AND MODIFYING THE MACROS

5.16.1 Naming Conventions

In this section, the following conventions are used to describe legal
names:

n: digit
a: lower-case letter
A: upper-case letter
x: any letter or digit (any alphanumeric character)
s: special character (any non-alphanumeric character)

All other characters are literals (Le., stand for themselves).

Note that request, macro, and string names are kept by the for­
matters in a single internal table, so that there must be no duplica­
tion among such names. Number register names are kept in a
separate table.

5.16.2 Names Used by Formatters

requests:

registers:

aa (most common)
an (only one, currently: .c2)

aa (normal)
.x (normal)
.s (only one, currently: .$)
% (page number)

5.16.3 Names Used by -mm

macros:

strings:

AA (most common, accessible to user)
A (less common, accessible to user)
)x (internal, constant)
>x (internal, dynamic)

AA (most common, accessible to user)
A (less common, accessible to user)
]x (internal, usually allocated to specific functions
throughout)
}x (internal, more dynamic usage)

The -mm macros 5-61

SECTION 2 Formatters

registers: Aa (most common, accessible to users)
An (common, accessible to user)
A (accessible, set on command line)
:x (mostly internal, rarely accessible, usually dedi­
cated)
;x (internal, dynamic, temporaries)

5.16.4 Names Used by eqn, neqn, and tbl

The equation preprocessors, eqn (1) and neqn (1), use registers and
string names of the form nn. The t~ble preprocessor, tbl (1), uses
names of the form:

a- a+ al nn #a ## #- # a T.

5.16.5 User-Definable Names

To avoid problems, we suggest using names that consist either of a
single lower-case letter, or of a lower-case letter followed by any­
thing other than a lower-case letter. The following is a sample
naming convention:

macros: aA

strings:

registers

Aa

a
a) (or a], or a}, etc.)

a
aA

5.17 SAMPLE EXTENSIONS

5.17.1 Appendix Headings

The following gives a way of generating and numbering appendices:

.nr Hu 1

.nr a 0

.de aH

.nr a +1

.nr PO

.PH " ' , , Appendix \ \na - \ \ \ \ \ \ \ \nP ' "

.SK

.HU "\ \ $1 "

Mter the above initialization and definition, each call of the form
".aH " title" " begins a new page (with the page header changed to
"Appendix a - n") and generates an unnumbered heading of title,
which, if desired, can be saved for the table of contents. Those who
wish Appendix titles to be centered must, in addition, set the regis­
ter He to 1.

TW

5-62 The -mm macros

r
~-.-

o

o

o

o

SECTION 2 Formatters

5.17.2 Hanging Indent with Tabs

The following example illustrates the use of the hanging-indent
feature of variable-item lists. First, a user-defined macro is built to
accept four arguments that make up the marie. Each argument is
to be separated from the previous one by a tab character; tab set­
tings are defined later. Since the first argument may begin with a
period or apostrophe, the" \." is used so that the formatter will not
interpret such a line as a formatter request or macro.

Note: The two-character sequence "\." is understood by the
formatters to be a "zero-width" space; i.e., it causes no
output characters to appear.

The "\ t" is translated by the formatter into a tab character. The
"\c" is used to concatenate the line of text that follows the macro
to the line of text built by the macro. The macro definition and an
example of its use are as follows:

.de ax

.LI
\.\\$I\t\\$2\t\\$3\t\\$4\t\c

.ta gn I8n 27n 36n

.VL 36

.ax .nh off \- no
No hyphenation.
Automatic hyphenation is turned off.
Words containing hyphens
(e.g., mother-in-law) may still be split across lines .
. ax .hy on \- no
Hyphenate.
Automatic hyphenation is turned on .
. ax .he \ c none none no (stands for a space)
Hyphenation indicator character is set to "c" or removed.
During text processing the indicator is suppressed
and will not appear in the output.
Prepending the indicator to a word has the effect
of preventing hyphenation of that word .
• LE

The resulting output is:

The -mm macros 5-63

SECTION 2 Formatters

.nh off

.hy on

.hc c none

no

no

none no

No hyphenation. Automatic
hyphenation is turned off.
Words containing hyphens (e.g.,
mother-in-law) may still be split
across lines.

Hyphenate. Automatic hyphe­
nation is turned on.

Hyphenation indicator character
is set to "c" or removed. Dur­
ing text processing the indicator
is suppressed and will not
appear in the output. Prepend­
ing the indicator to a word has
the effect of preventing hyphe­
nation of that word.

5.18 SUMMARY OF MACROS, STRINGS, AND
NUMBER REGISTERS

5.18.1 Macros

The following is an alphabetical list of macro names used by -mm.
The first line of each item gives the name of the macro and a brief
description. The second line gives a prototype call of the macro.

Macros marked with an asterisk are not, in general, invoked
directly by the user. Rather, they are "user exits" called from
inside header, footer, or other macros.

lC One-column processing
.IC

2C Two-column processing
.2C

AE Abstract end
.AE

AF Alternate format of "Subject/Date/From" block
.AF [company-name]

AL Automatically-incremented list start
.AL [type] [text-indent] [1]

AS Abstract start
.AS [arg] [indent]

AT Author's title
.AT [title] •••

AU Author information
.AU name [initials] [loc] [dept] [ext] [room] [arg] [arg] [arg]

5-64 The -mm macros

',-- .

/""- ...

\,

I

\,--

('
\

SECTION 2 Formatters

"-')
~/ AV Approval signature

.AV [name]

B Bold
.B [bold-arg] [previous-font-arg] [bold] [prev] [bold] [prev]

BE Bottom End
.BE

BI Bold/Italic
.BI [bold-arg] [italic-arg] [bold] [italic] [bold] [italic]

BL Bullet list start
.BL [text-indent] [1]

BR Bold/Roman

0
.BR [bold-arg] [Roman-arg] [bold] [Roman] [bold] [Roman]

BS Bottom Start
.BS

CS Cover sheet
.CS [pages] [other] [total] [figs] [tbls] [refs]

DE Display end
.DE

0
DF Display floating start

.DF [format] [fill] [right-indent]

DL Dash list start
.DL [text-indent] [1]

DS Display static start
.DS [format] [fill] [right-indent]

EC Equation caption

C) .EC [title] [override] [flag]

EF Even-page footer
.EF [arg]

EH Even-page header
.EH [arg]

EN End equation display
.EN

EQ Equation display start
.EQ [label]

EX Exhibit caption
.EX [title] [override] [flag]

FC Formal closing

0
.FC [closing]

The -mm macros 5-65

--_. __ ... _---- .. _ -- .. -- -------------

SECTION 2

FD Footnote default format
.FD [arg] [1]

FE Footnote end
.FE

FG Figure title
.FG [title] [override] [flag]

FS Footnote start
.FS [label]

H Heading-numbered
.H level [heading-text] [heading-suffix]

HC Hyphenation character
.HC [hyphenation-indicator]

Formatters

Heading mark style (Arabic or Roman numerals, or letters)
.HM [argl] ••• [arg7]

HU Heading-unnumbered
.HU heading-text

fIX * Heading user exit X (before printing heading)
.fIX dlevel rlevel heading-text

HY * Heading user exit Y (before printing heading)
.HY dlevel rlevel heading-text

HZ * Heading user exit Z (after printing heading)
.HZ dlevel rlevel heading-text

I Italic (underline in nroft')
.1 [italic-arg] [previous-font-arg] [italic] [prey] [italic] [prey]

m Italic/Bold
.IB [italic-arg] [bold-arg] [italic] [bold] [italic] [bold]

IR Italic /Roman
.IR [italic-arg] [Roman-arg] [italic] [Roman] [italic] [Roman]

LB List begin
.LB text-indent mark-indent pad type [mark] [LI-space]
[LB-space]

LC List-status clear
.LC [list-level]

LE List end
.LE[I]

LI List item
.LI [mark] [1]

ML Marked list start
.ML mark [text-indent] [1]

5-66 The -mm macros

SECTION 2 Formatters

C~ MT Memorandum type
.MT [type] [addressee] or .MT [4] [1]

ND New date
.ND new-date

NE Notation end
.NE

NS Notation start
.NS [arg]

nP Double-line indented paragraphs
.nP

OF Odd-page footer

0 .OF [arg]

OH Odd-page header
.OH [arg]

OK Other keywords for TM cover sheet
.OK [keyword] •..

OP Odd page
.oP

0 P Paragraph
.P [type]

PF Page footer
.PF [arg]

PH Page header
.PH [arg]

PM Proprietary Marking

0 .PM [code]

PX* Page-header user exit
.PX

R Return to regular (roman) font (end underlining in nroft')
.R

RB Roman/Bold
.RB [Roman-arg] [bold-arg] [Roman] [bold] [Roman] [bold]

RD Read insertion from terminal
.RD [prompt] [diversion] [string]

RF Reference end
.RF

RI Roman/Italic

0 .RI [Roman-arg] [italic-arg] [Roman] [italic] [Roman] [italic]

The -mm macros 5-67

SECTION 2

RL Reference list start
.RL [text-indent] [1]

RP Produce Reference Page
.RP [arg] [arg]

RS Reference start
.RS [string-name]

S Set troff point size and vertical spacing
.S [size] [spacing]

SA Set adjustment (right-margin justification) default
.SA [arg]

SG

SK

Signature line
.SG [arg] [1]

Skip pages
.SK [pages]

SP Space-vertically
.SP [lines]

TB Table title
• TB [title] [override] [flag]

TC Table of contents

Formatters

• TC [sieveI] [spacing] [tievel] [tab] [head1] [head2] [head3]
[head4] [head5]

TE Table end
.TE

TH Table header
.TH [N]

TL Title of memorandum
• TL [charging-case] [filing-case]

TM Technical Memorandum number(s)
• TM [number] ..•

TP * Top-of-page macro
.TP

TS Table start
.TS [H]

TX * Table-of-contents user exit
.TX

TY * Table-of-contents user exit (suppresses "CONTENTS")
.TY

VL Variable-item list start
.VL text-indent [mark-indent] [1]

5-68 The -mm macros

r"
I

\

("

r-"
I

o

c

0

o

SECTION 2 Formatters

VM Vertical margins
.VM [top] [bottom]

WC Width Control
• WC [format]

5.18.2 Strings

The following is an alphabetical list of string names used by -mm;
for each, there is a brief description, section reference, and initial
(default) value(s).

BU Bullet

Ci

nroff:@
troff: •

Contents indent up to seven args for heading levels (must
be scaled)

F Footnote numberer
nroff: \u\ \n+(:p\d
troff: \v' -.4m '\s-3\ \n+(:p\sO\v' .4m'

DT Date (current date, unless overridden)
Month day, year (e.g., May 28, 1985)

EM Em dash string, produces an em dash for both nroft' and
troft'

HF Heading font list, up to seven codes for heading levels 1
through 7

lIP

Le

Lf

Lt

Lx

RE

Rf

Rp

Tm

3 3 2 2 2 2 2 (levels 1 and 2 bold, 3-7 underlined in nroft',
and italic in troft')

Heading point size list, up to seven codes for heading levels
1 through 7

Title for LIST OF EQUATIONS

Title for LIST OF FIGURES

Title for LIST OF TABLES

Title for LIST OF EXHIBITS

SCCS Release and Level of -mm
Release.Level (e.g., 15.110)

Reference numberer

Title for References

Trademark string places the letters "TM" one half-line
above the text that it follows

Note that if the released-paper style is used, then, in addition to
the above strings, certain BTL location codes are defined as strings;
these location strings are needed only until the .MT macro is called.

The -mm macros 5-69

SECTION 2

Also accent strings are available.

5.18.3 Number Registers

Formatters

This section provides an alphabetical list of register names; for
each, a brief description, section reference, initial (default) value,
and the legal range of values (where [m:n] means values from m to
n inclusive) are provided.

Any register having a single-character name can be set from the
command line. An asterisk attached to a register name indicates
that that register can be set only from the command line or before
the -mm macro definitions are read by the formatter.

A * Handles preprinted forms and the Bell Logo
0, [0:2]

Au Inhibits printing of author's location, department, room,
and extension in the "from" portion of a memorandum
1, [0:1]

C * Copy type (Original, DRAFT, etc.)
o (Original), [0:4]

CI Contents level (Le., level of headings saved for table of
contents)

Cp

2, [0:7]

Placement of List of Figures, etc.
1 (on separate pages), [0:1]

D * De bug flag
0, [0:1]

De Display eject register for floating dislays
0, [0:1]

Df Display format register for floating displays
5, [0:5]

Ds Static display pre- and post-space
1, [0:1]

Ec Equation counter, used by .EC macro
0, [O:?], incremented by 1 for each .EC call.

Ej Page-ejection flag for headings
o (no eject), [0:7]

Eq Equation label placement
o (right-adjusted), [0:1]

Ex Exhibit counter, used by .EX macro
0, [O:?], incremented by 1 for each .EX call.

Fg Figure counter, used by .FG macro
0, [O:?], incremented by 1 for each .FG call.

5-70 The -mm macros

,/ ,

('

(
~,

SECTION 2 Formatters

C)
Fs Footnote space (Le., spacing between footnotes)

1, [O:?]

HI-H7 Heading counters for levels 1-7
0, [O:?], incremented by .H of corresponding level or .HU if
at level given by register Hu. H2-H7 are reset to 0 by any
heading at a lower-numbered level.

Hb Heading break level (after .H and .HU)
2, [0:7]

Hc Heading centering level for .H and .HU
o (no centered headings), [0:7]

Hi Heading temporary indent (after .H and .HU)

0
1 (indent as paragraph), [0:2]

Hs Heading space level (after .H and .HU)
2 (space only after .H 1 and .H 2), [0:7]

Ht Heading type (for .H: single or concatenated numbers)
o (concatenated numbers: 1.1.1, etc.), [0:1]

Hu Heading level for unnumbered heading (.HU)
2 (.HU at the same level as .H 2), [0:7]

0 Hy Hyphenation control for body of document
o (automatic hyphenation off), [0:1]

L * Length of page
66, [20:?] (IIi, [2i:?] in troft' yl

Le List of Equations
o (list not produced) [0:1]

Lf List of Figures

0 1 (list produced) [0:1]

Li List indent
6, [O:?]

Ls List spacing between items by level
5 (spacing between all levels) [0:5]

Lt List of Tables
1 (list produced) [0:1]

Lx List of Exhibits
1 (list produced) [0:1]

N* Numbering style
0, [0:5]

Np Numbering style for paragraphs

0 o (unnumbered) [0:1]

The -mm macros 5-71

-------_._-,._-,-_ .. _,_ .. _,_.'

SECTION 2 Formatters

0* Offset of page
.75i, [o:?] (0.5i, [Oi:?] in troft' t 1

Oc Table of Contents page numbering style
o (lowercase Roman), [0:1]

Of Figure caption style
o (period separator), [0:1]

P Page number, managed by -mm
0, [O:?]

Pi Paragraph indent
5, [O:?]

Ps Paragraph spacing
1 (one blank space between paragraphs), [O:?]

Pt Paragraph type
o (paragraphs always left-justified), [0:2]

Pv "PRN ATE" header
o (not printed), [0:2]

S* Troll default point size
10, [6:36]

Si Standard indent for displays
5, [O:?]

T* Type of nroff output device
0, [0:2]

Tb Table counter
0, [O:?], incremented by 1 for each. TB call.

U* Underlining style (nroff) for .H and .HU
o (continuous underline when possible), [0:1]

W* Width of page (line and title length1
6i, [10:1365] (6i, [2i:7.54i] in troft' t

5-72 The -mm macros

----_._-_ .. _._ .. -------

~'" (

"-,._ .. -'

r-'
\,

r
(
"-

/,--"

(,,_

('.
~--

o

o

o

o

o

SECTION 2 Formatters

Chapter 6: Eqn - a Pre-Processor for Text With Equations

6.1 INTRODUCTION

Eqn is a preprocessor designed to allow people who know neither
mathematics nor typesetting to typeset mathematical equations
easily. Enough of the language to set in-line expressions like
lim (tan z)sin 2~ = 1 or display equations, like the ones, below can be

~-+1(/2

learned in an hour or so.

() [S/c~l S zk/i G(z)=e1nGz=expE-- =IIe k

/C~1 k i~l

Eqn interfaces directly with troff, so mathematical expressions can
be embedded in the running text of a manuscript, allowing the
entire document to be produced in one process.

Eqn input files may be used with nroff as well. The input is ident­
ical, but you have to use a variant of eqn, called neqn instead. Of
course, some things won't be as attractive because terminals don't
provide the variety of characters, sizes, and fonts that a typesetter
does, but the output is usually adequate for proofreading. Eqn
knows relatively little about mathematics. In particular,
mathematical symbols like +, -, X, parentheses, and so on do not
have any special meanings. -

Eqn is normally invoked on the troff command line, using a state­
ment like

eqn filers) troff option(s)

6.2 DISPLAYED EQUATIONS

To tell eqn where a mathematical expression begins, use the .EQ
macro. Enter the text of the equation, then end it with a .EN
macro. Thus, if you type the lines

.EQ
x=y+z
.EN

your out put will look like

Using eqn 6-1

SECTION 2 Formatters

%=y+z

The .EQ and .EN are copied through untouched; they are not pro­
cessed by eqn. This means that you have to take care of centering,
numbering, and so on. The most common way is to use a macro
package like -InS or -mm, which will number equations and display
them in various ways.

With the -IDS package, equations are centered by default. To left­
justify an equation, use .EQ L instead of .EQ. To indent it, use
.EQ I. Any of these can be followed by an arbitrary "equation
number" which will be placed at the right margin. For example,
the input

.EQ I (3.la)
x = f(y/2) + y/2
.EN

produces the output

%=/(y/2)+y/2 (3.la)

There is also a shorthand notation so that in-line expressions like 1r~
can be entered without .EQ and .EN .

Note: When using eqn with the -mm macro package, always
force a break, using the .br request, before the .EQ
macro.

6.3 SP ACES AND NEWLINES

6.3.1 Input Spaces

Spaces and new lines within an expression are thrown away by eqn.
Normal text is left alone. Thus, between .EQ and .EN ,

x=y+z

and

x=y+z

and

x = Y
+z

all produce the same output,

%=y+z

Use spaces and new lines freely to make your input equations read­
able and easy to edit. In particular, very long lines are a bad idea,
since, with some editors, they are hard to fix if you make a mistake.

6-2 Using eqn

c'

/'-
(
\.. ..

c

o

o

o

o

o

SECTION 2 Formatters

6.3.2 Output Spaces

To force extra spaces into the output, use a tilde" - "for each
space you want:

x = - y- + - z

gives

%=y+z

You can also use a circumflex""''', which gives a space half the
width of a tilde. It is mainly useful for fine-tuning. Tabs may also
be used to position pieces of an expression, but the tab stops must
be set by troff commands.

6.4 SYMBOLS, SPECIAL NAMES, GREEK

Eqn knows some mathematical symbols, some mathematical
names, and the Greek alphabet. For example,

x=2 pi int sin (omega t)dt

produces

%=21IJ sin(wt)dt

Here the spaces in the input are necessary. They tell eqn that int,
pi, sin, and omega are separate entities that should get special
treatment. The sin, digit 2, and parentheses are set in roman type
instead of italic; pi and omega are made Greek; and int becomes
the integral sign.

When in doubt, leave spaces around separate parts of the input. A
common error is to type J(pi) without leaving spaces on both sides
of the pi. As a result, eqn does not recognize pi as a special word,
and it appears as J(pi) instead of f(1r).

6.5 DELIMITING SPECIAL SEQUENCES

The only way eqn can deduce that some sequence of letters might
be special is if that sequence is separated from the letters on either
side of it. This can be done by surrounding a special word by ordi­
nary spaces (or tabs or new lines), as we did in the previous section.

You can also make special words stand out by surrounding them
with tildes or circumflexes:

x- =- 2- pi- int- sin- (- omega- t-)- dt

is much the same as the last example, except that the tildes not
only separate the magic words like sin, omega, and so on, but also
add extra spaces, one space per tilde:

% = 2 11" f sin (w t) dt

Using eqn

---. -._ __ '---"-'-'-"---

6-3

SECTION 2

Special words can also be separated by braces { } and double
quotes" ... " , which hav-e special meanings.

6.6 SUBSCRIPTS AND SUPERSCRIPTS

Formatters

Subscripts and superscripts are obtained with the words sub and
sup.

x sup 2 + y sub k

gives

z2+ Yk

eqiJ. takes care of all the size changes and vertical motions needed
to make the output look right. The words sub and sup must be
surrounded by spaces; x sub2 will give you x8ub2 instead of X2'

Furthermore, don't forget to leave a space (or a tilde, etc.) to mark
the end of a subscript or superscript. A common error is to say
something like

y = (x sup 2)+1

which causes

,=(x2)+1

instead of the intended

,=(x2)+1

Subscripted subscripts and superscripted superscripts also work:

x sub i sub 1

is

A subscript and superscript on the same thing are printed one
above the other if the subscript comes first:

x sub i sup 2

is

z~ •
Other than this special case, sub and sup group to the right, so
x sup y sub z means x'z, not x'z.

6.7 BRACES FOR GROUPING

Normally, the end of a subscript or superscript is marked simply by
a blank (or tab, or tilde, etc.). If the subscript or superscript is
something that has to be typed with blanks in it, use braces to
mark the beginning and end of the subscript or superscript:

6-4 Using eqn

~.,

L

o

o

o

o

o

SECTION 2 Formatters

e sup {i omega t}

is

As a rule, braces can always be used to force eqn to treat some­
thing as a unit, or just to make your intent perfectly clear. Thus,

x sub {i sub I} sup 2

is

with braces, but

x sub i sub 1 sup 2

is

which is rather different.

Braces can be nested within other sets of braces if necessary:

e sup {i pi sup {rho +1}}

is

The general rule is that anywhere you could use some single charac­
ter like x, you can use an arbitrarily complicated expression if you
enclose it in braces. Eqn will look after all the details of position­
ing it and making it the right size.

In all cases, make sure you have the right number of braces. Leav­
ing one out or adding an extra will cause eqn to generate error mes­
sages.

Occasionally, you will have to print braces in your output. To do
this, enclose them in double quotes, like" {". Quoting is discussed
in more detail in a later section of this chapter.

6.8 FRACTIONS

To make a fraction, use the word over:

a+b over 2c =1

gives

a+6=1
2c

The line is made the right length and positioned automatically.
Braces can be used to make clear what goes over what:

Using eqn

._ -----. __ _ ... _. __ .. _. __ ._. ------_ .. _._---

6-5

SECTION 2

is

{alpha + beta} over {sin (x)}

a+/J
sin(x)

Formatters

When there is both an over and a sup in the same expression, eqn
does the sup before the over, so

-b sup 2 over pi
2 2

is -6 instead of -6-;. The rules that decide which operation is
7r

done first in cases like this are summarized later in this chapter.
When in doubt, use braces to make clear what parts of the expres­
sion should be treated together.

6.9 SQUARE ROOTS

To draw a square root, use sqrt:

sqrt a+b + lover sqrt {ax sup 2 +bx+c}

is

'v' a+6+ 1
Vax2+6x+c

Square roots of tall quantities may not look very good when set.
This is because a root-sign big enough to cover the quantity is too
dar k and heavy:

sqrt {a sup 2 over b sub 2}

is

Big square roots are generally better written as something to the

power ! .
6.10 SUMMATION, INTEGRAL, ETC.

Summations, integrals, and similar constructions are easy:

sum from i=O to {i= inf} x sup i

produces

Notice that we used braces to indicate where the upper part i-co
begins and ends. No braces were necessary for the lower part i 0,
because it contained no blanks. The braces will never hurt, and if
the from and to parts contain any blanks, you must use braces

6-6 Using eqn

r" I
\ ... , .•. _ .. /

('
\... ...

("
\ - "

o

o

o

o

SECTION 2 Formatters

around them.

The from and to parts are both optional, but if both are used, they
have to occur in that order.

Other useful characters can replace the sum in our example:

int prod union inter

become, respectively,

f II u n
Since the thing before the from can be anything, even something in
braces, from-to can often be used in unexpected ways:

lim from {n -> inf} x sub n =0

is

lim x.=O
.-+00

6.11 SIZE AND FONT CHANGES

By default, equations are set in 10-point type with standard
mathematical conventions to determine which characters are in
roman and which in italic. Although eqn makes an attempt to use
pleasing sizes and fonts, it is not perfect. To change sizes and
fonts, use size n and roman, italic, bold and fat. Like sub and
sup, size and font changes affect only the character or complete
expression that follows them, and revert to the normal situation at
the end of it. Thus

bold x y

is

xy

and

size 14 bold x = y +
size 14 {alpha + beta}

gives

x=y+a+{J

As always, you can use braces if you want to affect something more
complicated than a single letter. For example, you can change the
size of an entire equation by

size 12 { ... }

Legal sizes which may follow size are 6, 7, 8, g, 10, 11, 12, 14, 16,
18, 20, 22, 24, 28, 36. You can also change the size by a given
amount; for example, you can say size +2 to make the size two
points bigger, or size -3 to make it three points smaller.

Using eqn 6-7

... - - .. - --_ -._-_ _-_ .. _------

SECTION 2 Formatters

If you are using fonts other than roman, italic and bold, you can
say font X where X is a one character troft' name or number for
the font. Since eqn is tuned for Roman, Italic, and bold, other
fonts may not give quite as attractive an appearance.

The fat operation takes the current font and widens it by overstrik­
ing: fat grad is V and fat {x sub i} is Xi.

If an entire document is to be in a non-standard size or font, it is a
serious nuisance to have to write out a size and font change for
each equation. Accordingly, you can set a "global" size or font
which affects all equations thereafter. At the beginning of any
equation, you might say, for instance,

.EQ
gsize 16
gfont R

.EN

to set the size to 16 and the font to roman. In place of R, you can
use any of the troft' font names. The size after gsize can be a rela­
tive change with + or -.

Generally, gsize and gfont will appear at the beginning of a docu­
ment but they can also appear thoughout a document; the global
font and size can be changed as often as needed. For example, in a
footnotet you will typically want the size of equations to match the
size of the footnote text, which is two points smaller than the main
text. Don't forget to reset the global size at the end of the foot­
note.

6.12 DIACRITICAL MARKS

To get accent and other diacritical marks on top of letters, there
are several words:

x dot :r
x dotdot :r
x hat :i
x tilde %
x vec %
x dyad y

x bar %

x under ~

The diacritical mark is placed at the right height. The bar and

6-8

+Like this one, in which we have a few random expressions like %j and ",2. The sizes
for these were set by the command gsize -2.

Using eqn

()

o

r' U

SECTION 2 Formatters

under are made the right length for the entire construct, as in
%+y+z; other marks are centered.

6.13 QUOTED TEXT

Any input entirely within quotes (" ... ") is not subject to any of the
font changes and spacing adjustments normally done by the equa­
tion setter. This provides a way to do your own spacing and
adj usting if needed:

italic "sin(x)" + sin (x)

is

sin{ x }+sin(%)

Quotes are also used to get braces and other eqn keywords printed:

"{ size alpha }"

is

{ size alpha }

and

roman" { size alpha }"

is

{ size alpha}

The construction "" is often used as a place-holder when eqn needs
something grammatically, but you don't actually want anything in
your output. For example, to make 2He, you can't just type sup 2
roman He because a sup has to have something to put the super­
script above. Thus, you must say

"" sup 2 roman He

To get a literal quote, use "\"". Troff characters like \(bs can
appear unquoted, but more complicated things like horizontal and
vertical motions with \h and \ 1J should always be quoted.

6.14 LINING UP EQUATIONS

It's sometimes necessary to line up a series of equations at some
horizontal position, often at an equals sign. This is done with two
operations called mark and lineup.

The word mark may appear once at any place in an equation. It
remem bers the horizontal position where it appeared. Successive
equations can contain one occurrence of the word lineup. The
place where lineup appears is made to line up with the place
marked by the previous mark, if at all possible. Thus, for exam­
ple, you can say

Using eqn 6-9

SECTION 2

. EQ I
x+y mark = z
.EN
.EQ I
x lineup = 1
.EN

to produce

%+y=z

%=1

Formatters

When you use eqn and '-ms', use either .EQ I or .EQ L , since
mark and lineup don't work with centered equations. Also, bear in
mind that mark doesn't look ahead;

x mark =1

x+y lineup =z

isn't going to work, because there isn't room for the x+y part after
the mark remembers where the x is.

6.15 LARGE DELIMITERS

To get big brackets [], braces { }, parentheses (), and bars
around things, use the left and right commands:

is

left { a over b + 1 right}
- = - left (cover d right)
+ left [e right]

The resulting brackets are made big enough to cover whatever they
enclose. Other characters can be used besides these, but they are
not likely to look very good. One exception is the floor and ceiling
characters:

left floor x over y right floor
< = left ceiling a over b right ceiling

produces

Several warnings about brackets are in order. First, braces are typ­
ically bigger than brackets and parentheses, because they are made
up of three, five, seven, etc., pieces, while brackets can be made up
of two, three, etc.

6-10 Using eqn

,
.... ~-...

("

1\. ..

o

C)

o

SECTION 2 Formatters

The right part may be omitted: a "left something" need not have a
corresponding "right something". If the right part is omitted, put
braces around the thing you want the left bracket to encompass.
Otherwise, the resulting brackets may be too large.

If you want to omit the left part, things are more complicated,
because technically you can't have a right without a corresponding
left. Instead you have to say

left "" right)

for example. The left "" means a "left nothing". This satisfies the
rules without hurting your output.

6.16 PILES

There is a general facility for making vertical piles of things; it
comes in several formats. For example,

A - = - left [
pile { a above b above c }
- - pile { x above y above z }

right]

will make

The elements of the pile (there can be as many as you want) are
centered one above another, at the right height for most purposes.
The keyword above is used to separate the pieces; braces are used
around the entire list. The elements of a pile can be as complicated
as needed, even containing more piles.

Three other forms of pile exist: Ipile makes a pile with the elements
left-justified; rpile makes a right-justified pile; and cpile makes a
centered pile, just like pile. The vertical spacing between the
pieces is somewhat larger for 1-, r- and cpiles than it is for ordinary
piles.

roman sign (x)- =­
left {

lpile {1 above 0 above -1}
- - lpile
{if- x>O above if- x=O above if- x<O}

makes

{

I if x>O
sign{x) = 0 if x=o

-1 if x<O

Notice the left brace without a matching right one.

Using eqn 6-11

SECTION 2 Formatters

6.17 MATRICES

It is also possible to make matrices. For example, to make a neat
array like

lIi 11
you have to type

matrix {

}

ccol { x sub i above y sub i }
ccol { x sup 2 above y sup 2 }

This produces a matrix with two centered columns. The elements
of the columns are then listed just as for a pile, each element
separated by the word above. You can also use leolor reol to left
or right adjust columns. Each column can be separately adjusted,
and there can be as many columns as you like.

The reason for using a matrix instead of two adjacent piles, by the
way, is that if the elements of the piles don't all have the same
height, they won't line up properly. A matrix forces them to line
up, because it looks at the entire structure before deciding what
spacing to use.

Note: When using matrices, be sure that each column has the
same number of elements in it. If you don't, eqn will
do unpredictable things.

6.18 SHORTHAND FOR IN-LINE EQUATIONS

In a mathematical document, it is necessary to follow mathematical
conventions not just in display equations, but also in the body of
the text, for example by making variable names like % italic.
Although this could be done by surrounding the appropriate parts
with .EQ and .EN , the continual repetition of .EQ and .EN is a
nuisance. Furthermore, with '-ms', .EQ and .EN i;rnply a displayed
equation.

Eqn provides a shorthand for short in-line expressions. You can
define two characters to mark the left and right ends of an in-line
equation, and then type expressions right in the middle of text
lines. To set both the left and right characters to dollar signs, for
example, add to the beginning of your document the three lines

.EQ
delim $$
.EN

Having done this, you can then say things like

6-12 Using eqn

o

o

o

o

o

SECTION 2 Formatters

Let $alpha sub i$ be the primary variable, and let $beta$ be zero.
Then we can show that $x sub 1$ is $>=0$.

This works as you might expect - spaces, newlines, and so on are
significant in the text, but not in the equation part itself. Multiple
equations can occur in a single input line.

Enough room is left before and after a line that contains in-line
" expressions that something like 1; Xi does not interfere with the

lines surrounding it.

To turn off the delimiters,

.EQ
delim off
.EN

i=l

Note: Don't use braces, tildes, circumflexes, or double quotes
as delimiters - chaos will result.

6.19 DEFINITIONS

Eqn provides a facility so you can give "a frequently-used string of
characters a name, and thereafter just type the .name instead of the
whole string. For example, if the sequence

x sub i sub 1 + y sub i sub 1

appears repeatedly throughout a paper, you can save re-typing it
each time by defining it like this:

define xy 'x sub i sub 1 + y sub i sub l'

This makes xy a shorthand for whatever characters occur between
the single quotes in the definition. You can use any character
instead of quote to mark the ends of the definition, so long as it
doesn't appear inside the definition.

Now you can use xy like this:

.EQ
f(x) = xy ...
. EN

and so on. Each occurrence of xy will expand into what it was
defined as. Be careful to leave spaces or their equivalent around the
name when you actually use it, so eqn will be able to identify it as
special.

There are several things to watch out for. First, although
definitions can use previous definitions, as in

Using eqn 6-13

SECTION 2

.EQ
define xi 'x sub i '
define xiI 'xi sub 1 '
.EN

Formatters

you cannot define something in terms of itself. A common error is
to say

define X 'roman X '

This guarantees disaster, since X is now defined in terms of itself.
If, instead, you say

define X 'roman "X" ,

the quotes. protect the second X, and everything works fine.

Eqn keywords can be redefined. You can make / mean over by
saying

define / 'over'

or redefine over as / with

define over ' / '

If you need to make different things print on a terminal than on the
typesetter, it is sometimes worth defining a symbol differently in
neqn and eqn. This can be done with ndefine and tdefine. A
definition made with ndefine only takes effect if you are running
neqn. If you use tdefine , the definition only applies for eqn .
Names defined with plain define apply to both eqn and neqn.

6.20 LOCAL MOTIONS

Although eqn tries to get most things at the right place on the
paper, it isn't perfect, and occasionally, you will need to tune the
output to make it just right. Small extra horizontal spaces can be
obtained with tilde and circumflex. You can also say back nand
fwd n to move small amounts horizontally. n is how far to move in
1/100's of an em. Thus, back 50 moves back half an em. (See
Chapter 1 of this section for more information on ems). Similarly,
you can mo:ve things up or down with up n and down n. As with
Bub or sup, the local motions affect the next thing in the input, and
this can be something arbitrarily complicated if it is enclosed in
braces.

6.21 A LARGE EXAMPLE

Here is the complete source for the three display equations used in
the introduction to this chapter.

Using eqn

~-

(---

C)

o

o

o

0

SECTION 2 Formatte'rs

.EQ
G(zr mark = - e sup { In - G(z)}
- = - exp left (
sum from k>=l {S sub k z sup k} over k right)
- = - prod from k>=l e sup {S sub k z sup k /k}
.EN
.EQ
lineup = left (1 + S sub 1 z +
{ S sub 1 sup 2 z sup 2 } over 2! + ... right)
left (1+ { S sub 2 z sup 2 } over 2
+ { S sub 2 sup 2 z sup 4 } over { 2 sup 2 cdot 2! }
+ ... right) ...
. EN
.EQ
lineup = sum from m> =0 left (
sum from
pile { k sub 1 ,k sub 2 , ... , k sub m >=0
above
k sub 1 +2k sub 2 + ... +mk sub m =m}
{ S sub 1 sup {k sub I} } over {I sup k sub 1 k sub 1 ! } -
{ S sub 2 sup {k sub 2} } over {2 sup k sub 2 k sub 2 ! } -

{ S sub m sup {k sub m} } over {m sup k sub m k sub m ! }
right) z sup m
.EN

6.22 KEYWORDS, PRECEDENCES, ETC.

If you don't use braces, eqn will do operations in the order shown
in this list.

dyad vec under bar tilde hat dot dotdot
fwd back down up
fat roman italic bold st.ze
sub sup sqrt over
from to

These operations group to the left:

over sqrt left right

All others group to the right.

Digits, parentheses, brackets, punctuation marks, and these
mathematical words are converted to Roman font when encoun­
tered:

sin cos tan sinh cosh tanh arc
max min lim log In exp
Re 1m and if for det

These character sequences are recognized and translated as shown.

>= >
<= <
-- -

Using eqn 6-15

SECTION 2

,-.-
+­
->
<-
«
»
inf
partial
half
prime

±

«
»
00

a

approx ~

nothing
cdot
times
del
grad

, ... ,
sum

int
prod
union
inter

X
'\l
'\l

, ••• 1

~

f
II
U
n

Formatters

To obtain Greek letters, simply spell them out in whatever case you
want:

DELTA A iota t

GAMMA r kappa It;

LAMBDA A lambda A
OMEGA n mu I'
PHI ~ nu v
PI n omega w
PSI 'II omicron 0

SIGMA E phi ~
THETA e pi 1["

UPSILON T psi ,p
XI E rho p
alpha a sigma u
beta fJ tau T

chi X theta ()

delta S upsilon tJ

epsilon f xi e
eta '1 zeta ~
gamma '1

6-16 Using eqn

(-"
II

',--

~',

~

o

o

o

o

SECTION 2 Formatters

These are all the words known to eqn (except for characters with
names).

above lpile
back mark
bar matrix
bold ndefine
ccol over
col pile
cpile real
define right
delim roman
dot rpile
dot dot size
down sqrt
dyad sub
fat sup
font tdefine
from tilde
fwd to
gfont under
gsize up
hat vec
italic ,
leal { }
left " "
lineup

6.23 TROUBLESHOOTING

If you make a mistake in an equation, like leaving out a brace (very
common) or having one too many (also very common) or having a
sup with nothing before it (common), eqn will tell you with the
message

syntax error between lines x and y, file z

where x and yare the approximate lines between which the trouble
occurred, and z is the name of the file in question. The line
numbers may not specify the exact point of the error; look nearby
as well. There are also self-explanatory messages that arise if you
leave out a quote or try to run eqn on a non-existent file.

If you want to check a document before actually printing it, you
can always throwaway the output by redirection, as in

eqn files> Jdev/null

If you use something like dollar signs as delimiters, it is easy to
leave one out. This causes very strange troubles. The program
checkeq[l] checks for misplaced or missing dollar signs and similar

Using eqn 6-17

SECTION 2 Formatters

troubles.

In-line equations can only be so big because of an internal buffer in
troff. If you get a message "word overflow", you have exceeded
this limit. If you print the equation as a displayed equation, this
message will usually go away. The message "line overflow" indi­
cates you have exceeded an even bigger buffer. The only cure for
this is to break the equation into two separate ones.

On a related topic, eqn does not break equations by itself; you
must split long equations up across multiple lines by yourself, mark­
ing each by a separate .EQ EN sequence. eqn does warn about
equations that are too long to fit on one line.

6-18 Using eqn

-----------------------------""--""""" -"""-

o

o

o

o

o

SECTION 2 Formatters

Chapter 7: Tbl- a Preprocessor for Formatting Tables

7.1 INTRODUCTION

Tbl is a preprocessor that makes all sorts of tables easy to specify
and enter. Tables are made up of columns which may be indepen­
dently centered, right-adjusted, left-adjusted, or aligned by decimal
points. Headings may be placed over single columns or groups of
columns. A table entry may contain equations, or may consist of
several rows of text. Horizontal or vertical lines may be drawn as
desired in the table, and any table or element may be enclosed in a
box. For example,

1970 Federal Budget Transfers
(in billions of dollars)

State Taxes Money
Net

collected spent
New York 22.91 21.35 -1.56
New Jersey 8.33 6.96 -1.37
Connecticut 4.12 3.10 -1.02
Maine 0.74 0.67 -0.07
California 22.29 22.42 +0.13
New Mexico 0.70 1.49 +0.79
Georgia 3.30 4.28 +0.98
Mississippi 1.15 2.32 +1.17
Texas 9.33 11.13 +1.80

Tbl turns a simple description of a table into a troft' or nroft' pro­
gram (list of commands) that prints the table. Tbl attempts to iso­
late a portion of a job that it can handle, then leaves the remainder
for other programs. Thus tbl may be used with the equation for­
matting program eqn and the various macro packages without
interfering with their functions.

This chapter is divided into two parts. First, we give the rules for
preparing tbl input; then we show some examples. The description
of rules is precise but technical, and the beginning user may prefer
to read the examples first, as they show some common table
arrangements. A section explaining how to invoke tbl precedes the
examples.

7.2 INPUT

The input to tbl is text for a document, with tables preceded by a
" . TS" (table start) command and followed by a " . TE" (table end)
command. Tbl processes the tables, generating troft' formatting
commands, and leaves the remainder of the text unchanged. The
" . TS" and" . TE" lines are copied, too, so that troft' macro

Using tbl 7-1

SECTION 2 Formatters

packages (e.g., -mm and -ms) can use these lines to delimit and
place tables as they see fit. In particular, any arguments on the
" . TS" or " . TE" lines are copied but otherwise ignored, and may be
used to do things like change the font or invoke a keep.

The format of the input is as follows.

text
.TS
table
.TE
text

where the format of each table is as follows .

. TS
options;
format.
data
.TE

Each table is independent, and must contain formatting informa­
tion followed by the data to be entered in the table. The format­
ting information, which describes the individual columns and rows
of the table, may be preceded by a few options that affect the entire
table. A detailed description of tables is given in the next section.

As indicated above, a table contains, first, global options, then a
format section describing the layout of the table entries, and then
the data to be printed. The format and data are always required,
but not the options. The various parts of the table are entered as
follows.

7.3 GLOBAL OPTIONS

There may be a single line of options affecting the whole table. If
present, this line must follow the . TS line immediately and must
contain a list of option names separated by spaces, tabs, or com­
mas, and must be terminated by a semicolon. The allowable
options are:

center

expand

box

allbox

doublebox

tab (x)

7-2

center the table (default is left-adjust);

make the table as wide as the current line
length;

enclose the table in a box;

enclose each item in the table in a box;

enclose the table in two boxes;

use x instead of tab to separate data items.

Using tbl

o

o

c

SECTION 2 Formatters

linesize (n) set lines or rules (e.g. from box) in n point
type;

delim (zy) recognize.z and y as the eqn delimiters.

The tbl program tries to keep boxed tables on one page by issuing
appropriate "need" (. ne) commands. These requests are calculated
from the number of lines in the tables, and if there are spacing
commands embedded in the input, these requests may be inaccu­
rate; use normal troil' procedures, such as keep-release macros, in
that case. If you must have a multi-page boxed table, use macros
designed for this purpose, as explained in the "USAGE" section.

7.4 FORMAT KEY-LETTERS

The format section of the table specifies the layout of the columns.
Each line in this section corresponds to one line of the table (except
that the last line corresponds to all following lines up to the next
.T., if any - see below), and each line contains a key-letter for
each column of the table. It is good practice to separate the key
letters for each column by spaces or tabs. Key-letters are listed
below.

Note: Tbl will accept a key letter of either case. For example,
you may specify a right-adjusted column using R or r.

L indicates a left-adjusted column entry;

R indicates a right-adjusted column entry;

C indicates a centered column entry;

N indicates a numerical column entry, to be aligned with other
numerical entries so that the units digits of numbers line up;

A indicates an alphabetic subcolumn; all corresponding entries
are aligned on the left, and positioned so that the widest is
centered within the column;

S indicates a spanned heading (Le., the entry from the previous
column continues across this column (This is not allowed for
the first column.);

(caret, or up-arrow) indicates a vertically spanned heading
(Le., the entry from the previous row continues down
through this row. (This is not allowed for the first row of
the table.)

When numerical alignment is specified, a location for the decimal
point is sought. The rightmost dot (.) adjacent to a digit is used as
a decimal point; if there is no dot adjoining a digit, the rightmost
digit is used as a units digit; if no alignment is indicated, the item
is centered in the column. However, the special non-printing char­
acter string \. may be used to override dots and digits, or to align

Using tbl 7-3

SECTION 2 Formatters

alphabetic data; this string lines up where a dot normally would,
and then disappears from the final output. In the example below,
the items shown at the left will be aligned (in a numerical column)
as shown on the right:

Note:

13 13
4.2 4.2
26.4.12 26.4.12
abc abc
abc\. abc
43\.3.22 433.22
749.12 749.12

If numerical data are used in the same column with
wider L or R type table entries, the widest number is
centered relative to the wider L or R items (L is used
instead of I for readability; they have the same meaning
as key-letters). Alignment within the numerical items is
preserved. This is similar to the behavior of A type
data, as explained above. However, alphabetic sub­
columns (requested by the a key-letter) are always
slightly indented relative to L items; if necessary, the
column width is increased to force this. This is not true
for n type entries. The n and a items should not be
used in the same column.

For readability, the key-letters describing each column should be
separated by spaces. The end of the format section is indicated by
a period. The layout of the key-letters in the format section resem­
bles the layout of the actual data in the table. Thus a simple for­
mat might appear as:

css
Inn.

which specifies a table of three columns. The first line of the table
contains a heading centered across all three columns; each remain­
ing line contains a left-adjusted item in the first column followed by
two columns of numerical data. A sample table in this format
might be:

Overall title
Item-a 34.22 9.1
Item-b 12.65 .02
Items: c,d,e 23 5.8
Total 69.87 14.92

Additional features of the key-letter system are detailed below.

7-4 Using tbl

."-- '

o

o

o

o

SECTION 2 Formatters

7.4.1 Horizontal Lines

A key-letter may be replaced by '_' (underscore) to indicate a hor­
izontalline in place of the corresponding column entry, or by '=' to
indicate a double horizontal line. If an adjacent column contains a
horizontal line, or if there are vertical lines adjoining this column,
this horizontal line is extended to meet the nearby lines. If any
data entry is provided for this column, it is ignored and a warning
message is printed.

7.4.2 Vertical Lines

A vertical bar may be placed between column key-letters. This will
cause a vertical line between the corresponding columns of the
table. A vertical bar to the left of the first key-letter or to the right
of the last one produces a line at the edge of the table. If two vert­
ical bars appear between key-letters, a double vertical line is drawn.

7.4.3 Space Between Columns

A number may follow the key-letter. This indicates the amount of
separation between this column and the next column. The number
normally specifies the separation in ens. If the "expand" option is
used, then these numbers are multiplied by a constant such that
the table is as wide as the current line length. The default column
separation number is 3. If the separation is changed, the worst case
(largest space requested) governs.

7.4.4 Vertical Spanning

Normally, vertically spanned items extending over several rows of
the table are centered in their vertical range. If a key-letter is fol­
lowed by T, any corresponding vertically spanned item will begin at
the top line of its range.

7.4.5 Font Changes

A key-letter may be followed by a string containing a font name or
number preceded by the letter F. This indicates that the
corresponding column should be in a different font from the default
(usually Roman) font. All font names are one or two letters; a
one-letter font name should be separated from whatever follows by
a space or tab. The single letters B, b, I, and i are shorter
synonyms for fB and fl. Font change commands given with the
table entries override these specifications.

7.4.6 Point Size Changes

A key-letter may be followed by the letter P and a number to indi­
cate the point size of the corresponding table entries. The number
may be a signed digit, in which case, it is taken as an increment or
decrement from the current point size. If both a point size and a
column separation value are given, one or more blanks must
separate them.

Using tbl 7-5

SECTION 2 Formatters

7.4.7 Vertical Spacing Changes

A key-letter may be followed by the letter V and a number to indi­
cate the vertical line spacing to be used within a multi-line
corresponding table entry. The number may be a signed digit, in
which case it is taken as an increment or decrement from the
current vertical spacing. A column separation value must be
separated by blanks or some other specification from a vertical
spacing request. This request has no effect unless the corresponding
table entry is a text block (see below).

7.4.8 Column Width Indication

A key-letter may be followed by the letter Wand a width value in
parentheses. This width is used as a minimum column width. If
the largest element in the column is not as wide as the width value
given after the w, the largest element is assumed to be that wide.
If the largest element in the column is wider than the specified
value, its width is used. The width is also used as a default line
length for included text blocks. Normal troff units can be used to
scale the width value; otherwise, the default is ens. If the width
specification is a unitless integer the parentheses may be omitted.
If the width value is changed in a column, only the last one given
will be used.

7.4.9 Equal Width Columns

A key-letter may be followed by the letter E to indicate equal
width columns. All columns whose key-letters are followed by e or
E are made the same width. This lets you obtain a group of
regularly-spaced columns. Note that order of the above features is
immaterial; they need not be separated by spaces, except as indi­
cated above to avoid ambiguities involving point size a"nd font
changes. Thus a numerical column entry in italic font and 12 point
type with a minimum width of 2.5 inches and separated by 6 ens
from the next column could be specified as

np12w(2 .5i)f I 6

7.4.10 Alternative Notation

Instead of listing the format of successive lines of a table on con­
secutive lines of the format section, successive line formats may be
given on the same line, separated by commas, so that the format
for the example above might have been written:

c s s, Inn .

7.4.11 Defaults

Column descriptors missing from the end of a format line are
assumed to be L. The longest line in the format section, however,
defines the number of columns in the table; extra columns in the
data are ignored silently.

7-6 Using tbl

\
'--

o

o

o

o

o

SECTION 2 Formatters

7.5 DATA

Mter you have specified the format, you may specify the data to be
placed in the table. Normally, each table line is typed as one line
of data. Very long input lines can be broken: any line whose last
character is \ is combined with the following line. (The \ vanishes.)
The data for different columns (the table entries) must be separated
by tabs, or by another character specified in the tabs option.

7.5.1 Troff Requests Within Tables

An input line beginning with a ' .' followed by anything but a
number is assumed to be a troff request and is passed through
unchanged, retaining its position in the table. So, for example,
space within a table may be produced by " .sp" commands in the
data.

7 .5.2 Full Width Horizontal Lines

An input line containing an underscore (_) or an equal sign (=)
will generate a single or double line, respectively, extending the full
width of the table.

7 .5.3 Single Column Horizontal Lines

An input table entry containing an underscore (_) or an equal sign
(=) will generate a single or double line, respectively, extending
the full width of the column. Such lines are extended to meet hor­
izontal or vertical lines adjoining this column. To obtain either an
underscore or an equal sign in a column, either precede the charac­
ters with \. or follow them with a space before the usual tab or
newline.

7.5.4 Short Horizontal Lines

An input table entry containing only an underscore (_) generates
a single line as wide as the contents of the column. It is not
extended to meet adjoining lines.

7.5.5 Vertically Spanned Items

An input table entry containing only the character string \ A indi­
cates that the table entry immediately above spans downward over
this row. It is equivalent to a table format key-letter of ''''.

7 .5.6 Text Blocks

In order to include a block of text as a table entry, precede it by
T{ and follow it by T}. Thus, the sequence

T{
block of
text
T}

is the way to enter, as a single entry in the table, something that

Using tbl 7-7

SECTION 2 Formatters

(~~-.~'

cannot conveniently be typed as a simple string between tabs. "'---_/

Note: The T} end delimiter must begin a line; additional
columns of data may follow after a tab on the same line.

If more than twenty or thirty text blocks are used in a table, vari­
ous limits in the troif program are . likely to be exceeded, producing
diagnostics such as "too many string/macro names" or "too many
number registers." Text blocks are pulled out from·the table, pro­
cessed separately by troif, and replaced in the table as a solid
block. If no line length is specified in the block of text itself, or in
the table format, the default is to use

L * C / (N+l)

where L is the current line length, C is the number of table
columns spanned by the text, and N is the total number of columns
in the table. The other parameters (point size, font, etc.) used in
setting the block of text are those in effect at the beginning of the
table (including the effect of the" . TS" macro) and any table for­
mat specifications of size, spacing and font, using the p, v and f
modifiers to the column key-letters. Commands within the text
block itself are also recognized, of course. However, troif com­
mands within the table data but not within the text block do not
affect that block.

Note: Although any number of lines may be present in a table,
only the first 200 lines are used in calculating the widths
of the various columns. A multi-page table, of course,
may be arranged as several single-page tables if this
proves to be a problem. Other difficulties with format­
ting may arise because, in the calculation of column
widths all table entries are assumed to be in the font
and size being used when the" . TS" command was
encountered, except for font and size changes indicated
(a) in the table format section and (b) within the table
data (as in the entry \s+3\fIdata \fP\sO). Therefore,
although arbitrary troif requests may be sprinkled in a
table, care must be taken to avoid confusing the width
calculations; use requests such as ' . ps' with care.

7.6 ADDITIONAL COMMAND LINES

If the format of a table must be changed after many similar lines,
as with sub-headings or summaries, the" .T." (table continue) com­
mand can be used to change column parameters. The outline of
such a table input is:

7-8 Using tbl

o

o

o

o

o

SECTION 2 Formatters

.TS
options;
format.
data

.T.
format.
data
.T.
format.
data
.TE

Using this procedure, each table line can be close to its correspond­
ing format line.

Note: It is not possible to change the number of columns, the
space between columns, the global options such as box,
or the selection of columns to be made equal width.

7.7 USAGE

To run tbl as a preprocessor, use the command format below.

tbl filename{s) I troiT options

The usage for nroiT is similar to that for troiT, although not all ter­
minals can print boxed tables directly.

For the convenience of users employing line printers without ade­
quate driving tables or post-filters, there is a special - TX command
line option to tbl which produces output that does not have frac­
tional line motions in it. The only other command line options
recognized by tbl are -ms and -mm which are turned into com­
mands to fetch the corresponding macro files; usually it is more
convenient to place these arguments on the troff part of the com­
mand line, but they are accepted by tbl as well.

Note that when eqn and tbl are used together on the same file, tbl
should be used first. If there are no equations within tables, either
order works, but it is usually faster to run tbl first, since eqn nor­
mally produces a larger expansion of the input than tbl. However,
if equations are placed within tables (using the delim mechanism),
tbl must be run first. Otherwise, the output will be scrambled.
Users must also beware of using equations in n-style columns. This
nearly always results in unacceptable output, since tbl attempts to
split numerical format items into two parts, something that's not
possible with equations. To avoid this, give the delim{xx} table
option; this prevents splitting of numerical columns within the del­
imiters. For example, if the eqn delimiters are $$, giving
delim{$$) a numerical column such as "1245 $+- 16$" will be

Using tbl 7-9

._--_ ... _------_._--_._--_. __ .. __ ... _--_.-

SECTION 2 Formatters

divided after 1245, not after 16.

Tbllimits tables to twenty columns; however, use of more than 16
numerical columns may fail because of limits in troff, producing
the 'too many number registers' message. Troff number registers
used by tbl must be avoided by the user within tables; these
include two-digit names from 31 to 99, and names of the forms x,
x+, x I, AX, and X-, where x is any lower case letter. The names
-, and A are also used in certain circumstances. To conserve

num ber register names, the n and a formats share a register; hence
the restriction above that they may not be used in the same
column.

For aid in writing layout macros, tbl defines a number register TW
which is the table width; it is defined by the time that the" . TE"

. macro is invoked and may be used in the expansion of that macro.
More importantly, to assist in laying out multi-page boxed tables
the macro T is defined to produce the bottom lines and side lines
of a boxed table, and then invoked at its end. By using this macro
in the'page footer, you may arrange for multi-page tables to be
boxed. In particular, the -IDS macros can be used to print a multi­
page boxed table with a repeated heading by giving the argument H
to the" . TS" macro. If the table start macro is written

.TS H

a line of the form

.TH

must be given in the table after any table heading (or at the start if
none). Material up to the" . TH" is placed at the top of each page
of table; the remaining lines in the table are placed on several pages
as required. Note that this is not a feature of tbl, but of the -IDS

macro package.

7-10 Using tbl

c

o

0

o

o

SECTION 2 Formatters

7.8 EXAMPLES

This section consists of a number of examples intended to illustrate
the features of tbl. The symbol ® in the input represents a tab
character.

Input:

.TS
box;
c c c
Ill.
Language ®Authors ®Runs on

Fortran ®Many ®Almost anything
PL/1 ®ffiM ®360/370
C ®BTL @)Apollo, others
BLISS ®Carnegie-Mellon ®PDP-10,11
IDS ®Honeywell ®H6000
Pascal ® Stanford ®Apollo, others
.TE

Input:

.TS
allbox;
c s s
c c c
n n n.
AT.T Common Stock
Year ®Price ®Dividend
1971 ®41-54 ®$2 .60
2 ®41-54 ®2 .70
3 <r> 46-55 <r> 2 .87
4 <r>40-53 ~3 .24
5 ®45-52 ®3 .40
6 ®51-59 ® .95*
.TE
* (first quarter only)

Using tbl

Output:

Language Authors Runs on

Fortran Many Almost anything
PL/1 ffiM 360/370
C BTL Apollo, others
BLISS Carnegie-Mellon DEC
IDS Honeywell H6000
Pascal Stanford Apollo, others

Output:

AT.T Common Stock
Year Price Dividend
1971 41-54 $2.60

2 41-54 2.70
3 46-55 2.87
4 40-53 3.24
5 45-52 3.40
6 51-59 .95*

* (first quarter only)

7-11

SECTION 2 Formatters

Output: Input:

.TS
box;
css
clclc
llIln.

Major New York Bridges

Major New York Bridges

Bridge ®Designer {!)Length

Brooklyn ®J. A. Roebling ®1595
Manhattan (9G. Lindenthal (91470
Williamsburg ®L. L. Buck ® 1600

Queensborough ®Palmer . ® 1182
® Hornbostel

® ®1380
Triborough ® O. H. Ammann ®_
® ®383

Bronx Whitestone {!)O. H. Ammann ®2300
Throgs Neck ®O. H. Ammann ®1800

Bridge
Brooklyn
Manhattan
Williamsburg
Queensborough

Triborough

Bronx Whitestone
Throgs Neck
George Washington

George Washington ® 0 . H. Ammann ® 3500
.TE

Output:

Stack
Input: 1 46

.TS 2 23
c c 3 15
np-2 I n I · 4 6.5
®Stack 5 2.1
®

1 ®46
®-
2®23
®-
3®15
(T)_

4®6.5
®-

5 ®2.1
®-
.TE

7-12

Designer Length
J. A. Roebling 1595
G. Lindenthal 1470
L. L. Buck 1600
Palmer. 1182
Hornbostel

1380
O. H. Ammann

383
O. H. Ammann 2300
O. H. Ammann 1800
O. H. Ammann 3500

Using tbl

c

o

o

C)

o

o

SECTION 2

Input:

.TS
box;
LLL
LL_
LL /LB
LL_
L L L.
january ®february ®march
april ®may
june ® july ®Months
august ®september
october ®november ®december
.TE

Input:

.TS
box;
cfB s s s.
Composition of Foods

-
.T.
clcss
c I c s s
clclclc.
Food ®Percent by Weight
\,. ®-
\,. ®Protein ®Fat ®Carbo­
\,. ®\,. ®\,. ®hydrate

-
.T.
llnlnln.
Apples ® .4 ® .5 ® 13.0
Halibut ®18.4 ®5.2 ® •
Lima beans ®7 .5 ® .8 ®22 .0
Milk ®3 .3 ®4.0 ®5 .0
Mushrooms ®3.5 ®.4 ®6.0
Rye bread ®9.0 ®.6 ®52.7
.TE

Using tbl

Output:

january
april
june
august
october

Output:

Formatters

february march

may I
july Months
september '-------I
november december

Composition of Foods
Percent by Weight

Food
Protein Fat Carbo-

hydrate
Apples .4 .5 13.0
Halibut 18.4 5.2 ...
Lima beans 7.5 .8 22.0
Milk 3.3 4.0 5.0
Mushrooms 3.5 .4 6.0
Rye bread 9.0 .6 52.7

7-13

SECTION 2

Input:

.TS
allbox;
cfI s s
c cvv(li) cvv(li)
lp9 lp9 lp9.
Nevv York Area Rocks
Era @>Formation @>Age (years)
Precambrian @>Reading Prong @> > 1 billion
Paleozoic @>Manhattan Prong @>400 million
Mesozoic @>T{
.na
N evvark Basin, incl.
Stockton, Lockatong, and Brunsvvick
formations; also Watchungs
and Palisades.
T} @>200 million
Cenozoic @>Coastal Plain @> T {
On Long Island 30,000 years;
Cretaceous sediments redeposited
by recent glaciation •
• ad
T}
.TE

Input:

.TS
box, tab(:);
cb s s s s
cp-2 s s s s
cllclclclc
cllclclclc
r2 I I n2 I n2 I n2 In.
Readability of Text
Line Width and Leading for 10-Point Type

Line: Set: I-Point: 2-Point : 4-Point
Width: Solid : Leading: Leading: Leading

9 Pica: \-9.3 : \-6.0 : \-5.3 : \-7 .1
14 Pica: \-4.5 : \-0.6 : \-0.3 : \-1.7
19 Pica: \-5.0 : \-5.1: 0.0: \-2.0
31 Pica: \-3 .7 : \-3.8 : \-2.4 : \-3 .6
43 Pica: \-9.1 : \-9.0 : \-5.9 : \-8.8
.TE

7-14

Formatters

Output:

New York Area Rocks
Era Formation Age (years)

Precambrian Reading Prong >1 billion
Paleozoic Manhattan Prong 400 million
Mesozoic Newark Basin, 200 million

inc!. Stockton,
Lockatong, and
Brunswick forma-
tions; also
Watchungs and
Palisades.

Cenozoic Coastal Plain On Long Island
30,000 years; Cre-
taceous sediments
redeposited by
recent glaciation.

Output:

Readability of Text
Line Width and Leading for to-Point Type

Line Set I-Point 2-Point 4-Point
Width Solid Leading Leading Leading
9 Pica -9.3 -6.0 -5.3 -7.1

14 Pica -4.5 -0.6 -0.3 -1.7
19 Pica -5.0 -5.1 0.0 -2.0
31 Pica -3.7 -3.8 -2.4 -3.6
43 Pica -9.1 -9.0 -5.9 -8.8

Using tbl

SECTION 2 Formatters

C Input: Output:

.TS Some London Transport Statistics
c s (Year 1964)
cip-2 s Railway route miles 244
In Tube 66
an. Sub-surface 22
Some London Transport Statistics Surface 156
(Year 1964) Passenger traffic - railway
Railway route miles <:D244 Journeys 674 million
Tube <:D66 Average length 4.55 miles
Sub-surface <:D 22
Surface <:D 156

Passenger miles 3,066 million
Passenger traffic - road

.sp .5 Journeys 2,252 million

.T. Average length 2.26 miles

0
I r Passenger miles 5,094 million
a r.
Passenger traffic \- railway Vehicles 12,521
Journeys <:D674 million Railway motor cars 2,905
Average length <:D4 .55 miles Railway trailer cars 1,269
Passenger miles <:D3,066 million Total railway 4,174
.T. Omnibuses 8,347
I r Staff 73,739
a r. Administrative, etc. 5,582
Passenger traffic \- road Civil engineering 5,134

0
Journeys <:D2,252 million Electrical eng. 1,714
Average length @2.26 miles Mech. eng. - railway 4,310
Passenger miles @5,094 million Mech. eng. - road 9,152
.T. Railway operations 8,930
In Road operations 35,946
an. Other 2,971
.sp .5
Vehicles <:D 12,521
Railway motor cars <:D2,905
Railway trailer cars <:D1,269

0 Total railway <:D4,174
Omnibuses @8,347
.T.
In
an •
• sp .5
Staff@73,739
Administrative, etc. <:D5,582
Civil engineering <:D5,134
Electrical eng. <:D1,714
Mech. eng. \- railway <:D4,310
Mech. eng. \- road @9,152
Railway operations <:D8,930
Road operations <:D35,946
Other <:D2,971
.TE

0
Using tbl 7-15

------""--""-----------"-----"------

SECTION 2 Formatters

Input:

.ps 8

.vs lOp

.TS
center box;
css
ci s s
c c c
IB I n.
New Jersey Representatives
(Democrats)
.sp .5
Name @>Office address @>Phone
.sp .5
James J. Florio @>23 S. White Horse Pike, Somerdale 08083 @>609-627-8222
William J. Hughes ®2920 Atlantic Ave., Atlantic City 08401 @>609-345-4844
James J. Howard (!)801 Bangs Ave., Asbury Park 07712 @>201-774-1600
Frank Thompson, Jr. @>10 Rutgers PI., Trenton 08618 @>609-599-1619
Andrew Maguire @>115 W. Passaic St., Rochelle Park 07662 @>201-843-0240
Robert A. Roe @>U.S.P.O., 194 Ward St., Paterson 07510 @>201-523-5152
Henry Helstoski @>666 Paterson Ave., East Rutherford 07073 @>201-939-9090
Peter W • Rodino, Jr. @>Suite 1435A, 970 Broad St., Newark 07102 @>201-645-3213
Joseph G. Minish @)308 Main St., Orange 07050 @>201-645-6363
Helen S. Meyner @>32 Bridge St., Lambertville 08530 @>609-397-1830
Dominick V. Daniels @>895 Bergen Ave., Jersey City 07306 @>201-659-7700
Edward J. Patten @)Natl. Bank Bldg., Perth Amboy 08861 @>201-826-4610
.sp .5
.T.
ci s s
IB I n.
(Republicans)
.sp .5v

. Millicent Fenwick @)41 N. Bridge St., Somerville 08876 @>201-722-8200
Edwin B. Forsythe (!)301 Mill St., Moorestown 08057 @>609-235-6622
Matthew J. Rinaldo @>1961 Morris Ave., Union 07083 @>201-687-4235
.TE
.ps 10
.vs 12p

7-16 Using tbl

c

C

0

0

o

o

SECTION 2 Formatters

Output:

New Jersey Representatives
(Democratll)

Name Office address Phone

James J. Florio 23 S. White Horse Pike, Somerdale 08083 609-627-8222
William J. Hughes 2920 Atlantic Ave., Atlantic City 08401 609-345-4844
James J. Howard 801 Bangs Ave., Asbury Park 07712 201-774-1600
Frank Thompson, Jr. 10 Rutgers PI., Trenton 08618 609-599-1619
Andrew Maguire 115 W. Passaic St., Rochelle Park 07662 201-843-0240
Robert A. Roe U.S.P.O., 194 Ward St., Paterson 07510 201-523-5152
Henry Helstoski 666 Paterson Ave., East Rutherford 07073 201-939-9090
Peter W. Rodino, Jr. Suite 1435A, 970 Broad St., Newark 07102 201-645-3213
Joseph G. Minish 308 Main St., Orange 07050 201-645-6363
Helen S. Meyner 32 Bridge St., Lambertville 08530 609-397-1830
Dominick V. Daniels 895 Bergen Ave., Jersey City 07306 201-659-7700
Edward J. Patten NatI. Bank Bldg., Perth Amboy 08861 201-826-4610

(Republican8)

Millicent Fenwick 41 N. Bridge St., Somerville 08876 201-722-8200
Edwin B. Forsythe 301 Mill St., Moorestown 08057 609-235-6622
Matthew J. Rinaldo 1961 Morris Ave., Union 07083 201-687-4235

This is a paragraph of normal text placed here only to indicate where
the left and right margins are. In this way, the reader can judge
the appearance of centered tables or expanded tables, and observe
how such tables are formatted.

Input:

.TS
expand;
c s s s
c c c c
11 n n.
Bell Labs Locations
Name <:DAddress <:DArea Code <:DPhone
Holmdel <:DHolmdel, N • J • 07733 <:D201 <:D949-3000
Murray Hill <:DMurray Hill, N. J. 07974 <:D201 <:D582-6377
Whippany <:DWhippany, N. J. 07981 <:D201 <:D386-3000
Indian Hill <:DNaperville, Illinois 60540 <:D312 <:D690-2000
.TE

Using tbl 7-17

--_ _-_ •. _ .. __ . __ .. _--

SECTION 2

Output:

Name
Holmdel
Murray Hill
Whippany
Indian Hill

Input:

.TS
box;
cb s s s
clclcs

Bell Labs Locations
Address

Holmdel, N. J. 07733
Murray Hill, N. J. 07974
Whippany, N. J. 07981
Naperville, Illinois 60540

Itiw(li) Iltw(2i) Ilp8 Ilw(1 .6i)p8 •
Some Interesting Places

Name @}Description ®Practical Information

T{
American Museum of Natural History
T}®T{

Area Code
201
201
201
312

The collections fill 11.5 acres (Michelin) or 25 acres (MTA)
of exhibition halls on four floors. There is a full-sized replica
of a blue whale and the world's largest star sapphire (stolen in 1964).
T} ®Hours @}10-5, ex. Sun 11-5, Wed. to 9
\" ®\" ®Location ®T{
Central Park West. 79th St.
T}
\" @}\" @}Admission ®Donation: $1.00 asked
\" ® \" @}Subway ®AA to 81st St.
\" @}\" ®Telephone ®212-873-4225

Bronx Zoo ® T {
About a mile long and .6 mile wide, this is the largest zoo in America.
A lion eats 18 pounds
of meat a day while a sea lion eats 15 pounds of fish.
T} ®Hours ®T{
10-4:30 winter, to 5:00 summer
T}
\" @}\" @}Location ®T{
185th St •. Southern Blvd, the Bronx.
T}
\" @}\" @}Admission ®$1.00, but Tu,We,Th free
\" @}\" ®Subway ®2, 5 to East Tremont Ave.
\" ®\" @}Telephone ®212-933-1759

Brooklyn Museum ® T {
Five floors of galleries contain American and ancient art.
There are American period rooms and architectural ornaments saved

7-18

Formatters

Phone
949-3000
582-6377
386-3000
690-2000

Using tbl

r·
(
~.-

(
~--

---- ----~------------------------------

o

o

o

o

o

-_._-----_ .. _._---

SECTION 2

from wreckers, such as a classical figure from Pennsylvania Station.
T} ®Hours ®Wed-Sat, 10-5, Sun 12-5
\ A ®\ A ®Location ®T{
Eastern Parkway . Washington Ave., Brooklyn.
T}
\ A ®\ A ®Admission ®Free
\ A ®\ A ®Subway ®2,3 to Eastern Parkway.
\ A ®\ A ®Telephone ®212-638-5000

T{
New York Historical Society
T} ®T{
All the original paintings for Audubon's
.1
Birds of America
.R
are here, as are exhibits of American decorative arts, New York history,
Hudson River school paintings, carriages, and glass paperweights.
T} ®Hours ®T{
Tues-Fri . Sun, 1-5; Sat 10-5
T}
\ A ®\A ®Location ®T{
Central Park West . 77th St.
T}
\ A ® \ A ®Admission ®Free
\A ®\ A ®Subway ®AA to 81st St.
\ A ®\ A ®Telephone ®212-873-3400
.TE

Using tbl

Formatters

7-19

SECTION 2 Formatters

Output:

Some Interesting Places
Name Description Practical Information

American The collections fill 11.5 acres Hours 10-5, ex. Sun 11-5, Wed. to 9
Museum of (Michelin) or 25 acres (MTA) of Location Central Park West. 79th St.
Natural History exhibition halls on four floors. Admission Donation: $1.00 asked

There is a full-sized replica of a Subway AA to 81st St.

blue whale and the world's larg- Telephone 212-873-4225

est star sapphire (stolen in
1964).

Bronx Zoo About a mile long and .6 mile Hours 10-4:30 winter, to 5:00 summer

wide, this is the largest zoo in Location 185th St .. Southern Blvd, the

America. A lion eats 18 pounds Bronx.

of meat a day while a sea lion Admission $1.00, but TU,We,Th free

eats 15 pounds of fish. Subway 2, 5 to East Tremont Ave.

Telephone 212-933-1759

Brooklyn Museum Five floors of galleries contain Hours Wed-Sat, 10-5, Sun 12-5

American and ancient art. Location Eastern Parkway. Washington

There are American period Ave., Brooklyn.

rooms and architectural orna- Admission Free

ments saved from wreckers, such Subway 2,3 to Eastern Parkway.

as a classical figure from Telephone 212-638-5000

Pennsylvania Station.
New York Histor- All the original paintings for Hours Tues-Fri . Sun, 1-5; Sat 10-5
ical Society Audubon's Birds of America Location Central Park West. 77th St.

are here, as are exhibits of Admission Free c
American decorative arts, New Subway AA to 81st St.

York history, Hudson River Telephone 212-873-3400

school paintings, carriages, and
glass paperweights.

c\
7-20 Using tbl

o

o

o

o

SECTION 2 Formatters

7.9 SUMMARY OF COMMANDS AND KEY-LETTERS

The following table summarizes all of tbl's commands and key­
letters.

Note:

Using tbl

All key-letters are acceptable in either upper- or lower­
case. Only upper case is shown in the table below.

Command
A
allbox
B
box
C
center
doublebox
E
expand
F
I
L
N
nnn
p
R
S
T
tab (x)
T{" - - "T}"
V
W
.xx
I

" \"

\-

Meaning
Alphabetic subcolumn
Draw box around all items
Boldface item
Draw box around table
Centered column
Center table in page
Doubled box around table
Equal width columns
Make table full line width
Font change
Italic item
Left adjusted column
Numerical column
Column separation
Point size change
Right adjusted column
Spanned item
Vertical spanning at top
Change data separator character
Text block
Vertical spacing change
Minimum width value
Included trolJ command
Vertical line
Double vertical line
Vertical span
Vertical span
Double horizontal line
Horizontal line
Short horizontal line

---_ .. _------------

7-21

o
Index

!, in troff conditional request 2-30 footer, and header in -mm 5-7
;, as tbl delimiter 7-2 footnote
{, as troff delimiter 2-30 in me 4-7

with equation 6-8
A
accent marks H

in eqn 6-8 header, and footer in -mm 5-7
-ms "new" 3-10 headings

0
arithmetic operators, in troff 1-17,2-5 in-mm 5-14, 5-16

numbering style in -mm 5-17
B heads, numbered, in -me 4-3
backslash, as troff escape 1-2 hyphenation, in n/troff 2-10
beginning, of -mm document 5-2 hyphenation indicator, in -mm 5-11
blank line, in troff 2-14
body, of -mm document 5-2 I
brace, as eqn delimiter 6-6 indent, hanging
bullet, in -mm list 5-24 in -me 4-2

Ill-ms 3-4

0 C indents, nested, in -ms 3-5
charact.ers index, in -me 4-7

troff greek 1-6
troff special 1-6 L

col leading, in troff 1-3
used with nroff and -mm 5-6 line, horizontal, in tbl 7-4
used with nroff files 3-12 line, vertical, in tbl 7-5

column width, in tbl 7-6 line overflow, n/troff error 2-33,6-18
comment, in n/troff 1-14, 2-24 lists, nested, in -mm 5-21

0 compacted macros, -mm 5-4
M

D me macros,
debug mode, in -mm 5-6 $0 4-4
decimal point, in tables 7-3 $0 4-12
diacritical marks, in troff 1-11 $c 4-12
display queue, in -mm 5-33 $p 4-4
dollar sign, as eqn delimiter 6-12 (c 4-6

(f 4-7
E (1 4-6
em, in nroff 2-4 (q 4-6
end, of -mm document 5-2 (x 4-7
equations, in -me 4-10 (z 4-6

)c 4-7
F)q 4-6
font)z 4-6

0
in tables 7-5 +c 4-12
to set in in -me 4-1 2c 4-8
to change in -ms 3-6 ac 4-12

Index 1

SECTION 2 Formatters

~
'I,

B 4-6 lIM: 5-17 ''--- "

be 4-8 HU 5-18
bi 4-9 HX 5-19
bx 4-9 HY 5-19
ef 4-5 HZ 5-19
eh 4-5 I 5-49
fo 4-4 LB 5-27
he 4-4 LB 5-29
hI 4-11 LE 5-24
hx 4-5 LI 5-23

4-8 1\1L 5-25
ip 4-2 ND 5-55
ix 4-9 NS 5-56
10 4-11 OF 5-42
Ip 4-2 OP 5-53
nl 4-9 P 5-13 c-" n2 4-9 PF 5-42
of 4-5 PF 5-42
oh 4-5 PH 5-41
pd 4-7 PS 5-53
pp 4-2 PX 5-44
R 4-6 R 5-49
r 4-8 RD 5-54
rb 4-8 RE 5-50
re 4-10 RF 5-48 (" sh 4-3 RL 5-26
sk 4-9 RS 5-48
sx 4-3 SA 5-50
sz 4-8 SK 5-53
TE 7-1 SP 5-52
th 4-11 TB 5-37
tp 4-11 TC 5-45
TS 7-1 TE 7-1
u 4-9 TH 5-36

r'" uh 4-3 TP 5-43 \
mm macros, TS . 7-1 " -

for BTL use 5-54 TX 5-46
2C 5-50 TY 5-46
AL 5-24 VL 5-26
AV 5-57 VM 5-45
B 5-49 WC 5-35
BE 5-44 ms macros,
BL 5-25 2C 3-2
DF 5-33 AM 3-10
DL 5-25 Bl 3-8
DS 5-32 B2 3-8
EF 5-42 BX 3-8
EX 5-37 DA 3-9
FD 5-39 DE 3-8
FE 5-38 DS 3-8
FG 5-37 EQ 6-2 C' FS 5-38 FE 3-7
H 5-14 FS 3-7

2 Index

SECTION 2 Formatters

0 I 3-6 semicolon, as tbl delimiter 7-2
IP 3-4 spaces
KF 3-9 in tables 7-5
KS 3-9 interpreted by eqn 6-2, 6-3
LP 3-2 special characters
ND 3-9 as troff delimiters 2-21
NH 3-3 in-mm 5-11
PB 3-2 in troff 2-5
PP 3-2 string, to define in troff 1-12
PT 3-2
PX 3-13 T
R 3-6 tab stops, in n/troff 2-20
RE 3-5 table
RS 3-5 example of simple format 7-4
TE 7-1 Ill-me 4-10

0 TS 7-1 tabs
XE 3-13 in -me 4-10
XP 3-12 in-mm 5-11
XS 3-13 in troff 1-8

text filling, in troff 2-11
N tilde
newlines, interpreted by eqn 6-2 as eqn delimiter 6-3
number registers in n/troff 2-4

to set, in -mm 5-6 trap, in troff 1-15

;:=) used by -ms 3-9 troff, command line options ~-1
troff escape character, 2-3

P troff font change, in-line 1-5
page number troff requests

in -IDS 3-2 ad 2-11
in troff 1-16 am 2-17

paragraph as 2-18
in -me 4-2 bd 2-8
in -mm 5-13 bp 2-9
in -ms 3-2 c2 2:-23

0 pipes, in troff command lines 2-3 cc 2-23
point size ce 2-12

in -mm headings 5-16 ce 2-14
in tables 7-5 ch 2-18
in troff 1-2, 2-6 cs 2-7
relative change 1-3 cu 2-23
to change in -ms 3-6 cu 5-16

preamble, of -mm document 5-1 da 2-18
de 1-13

Q de 2-15
quote de 2-17

in eqn 6-9 di 1-23
in -mm macro arguments 5-9 di 2-18

ds 1-12
R ds 2-17
resolution, in n/troff 1-4, 2-4 ec 2.,.22

;.:J em 2-19
S eo 2-22
scale indicators, in n/troff 2-4 ev 1-22

Index 3

---_. __ _ _._--_ .. _ .. .

SECTION 2 Formatters

~~-" (.

ex 2-31 sp
\

2-13 ,--_./
fc 2-21 ss 2-7
fi 2-11 sv 2-13
fl 2-33 sv 2-13
fp 1-5 ta 2-20
fp 2-6 ta 2-21
fp 2-8 tc 1-8
ft 1-5 tc 2-21
ft 2-6 ti 2-14
ft 2-8 tl 1-15
if 1-21 tm 2-32
if 2-30 tr 1-6
ig 2-32 tr 2-24
III 1-14 uf 2-23
in 2-14 ul 1-5
it 2-18 ul 2-23

/,--. -,

(

Ic 2-21 ul 5-16
Ig 2-22 vs 2-13
11 1-6 wh 1-15
11 2-14 wh 1-15
Is 2-13 wh 2-17
It 1-16 wh 2-18
It 2-14
It 2-28 V
mc 2-32 vertical spacing, in tables 7-5 ~

mk 2-10 I,

2-9 W
\. ne

nf 2-11 word overflow, n/troff error 2-33,6-18
nm 2-29
nn 2-29
nr 1-17
nr 2-19
nr 2-19
nr 5-8
ns 2-14 r'-·

2-32
\ nx '-.

pc 2-28
pi 2-32
pi 3-12
pI 2-9
pm 2-33
pn 2-9
po 2-9
ps 2-7
rd 2-31
rm 2-18
rn 2-18
rr 2-20
rs 2-14
rt 2-10
so 2-32 (- - '.

sp 1-6 \.
sp 2-13

4 Index

o

o

o

o

o

Appendix A : Advanced Editing on UNIX

1. INTRODUCTION

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

Although UNIX provides remarkably effective tools for text editing, that by
itself is no guarantee that everyone will automatically make the most effective
use of them. In particular, people who are not computer specialists - typists,
secretaries, casual users - often use the system less effectively than they might.

This document is intended as a sequel to A Tutorial Introduction to the
UNIX Text Editor [1], providing explanations and examples of how to edit' with
less effort. (You should also be familiar with the material in UNLY For Beg£nners
[2].) Further information on all commands discussed here can be found in The
UNIX Programmer's Manual [3].

Examples are based on observations of users and the difficulties they
encounter. Topics covered include special characters in searches and substitute
commands, line addressing, the global commands, and line moving and copying.
There are also brief discussions of effective use of related tools, like those for file
manipulation, and those based on ed, like grep and sed.

A word of caution. There is only one way to learn to use something, and
that is to use it. Reading a description is no substitute for trying something. A
paper like this one should give you ideas about what to try, but until you actu­
ally try something, you will not learn it.

2. SPECIAL CHARACTERS
The editor ed is the primary interface to the system for many people, so it is

worthwhile to know how to get the most out of ed for the least effort.
The next few sections will discuss shortcuts and labor-saving devices. Not

all of these will be instantly useful to anyone person, of course, but a few will be,
and the others should give you ideas to store away for future use. And as
always, until you try these things, they will remain theoretical knowledge, not
something you have confidence in.

The List command 'I'
ed provides two commands for printing the contents of the lines you're edit­

ing. Most people are familiar with p, in combinations like

Advanced ed A-I

A-2 Advanced ed

1,$p

to print all the lines you're editing, or

s/abc/def/p

to change 'abc' to 'def' on the current line. Less familiar is the list command I
(the letter 'r), which gives slightly more information than p. In particular, I
makes visible characters that are normally invisible, such as tabs and backspaces.
If you list a line that contains some of these, I will print each tab as ~ and each
backspace as <. This makes it much easier to correct the sort of typing mistake
that inserts extra spaces adjacent to tabs, or inserts a backspace followed by a
space.

The I command also 'folds' long lines for printing - any line that exceeds 72
characters is printed on multiple lines; each printed line except the last is ter­
minated by a backslash \, so you can tell it was folded. This is useful for print­
ing long lines on short terminals.

Occasionally the I command will print in a line a string of numbers preceded
by a backslash, such as \07 or \16. These combinations are used to make visible
characters that normally don't print, like form feed or vertical tab or bell. Each
such combination is a single character. When you see such characters, be wary
- they may have surprising meanings when printed on some terminals. Often
their presence means that your finger slipped while you were typing; you almost
never want them.

The Substitute Command's'
Most of the next few sections will be taken up with a discussion of the sub­

stitute command s. Since this is the command for changing the contents of indi­
vidual lines, it probably has the most complexity of any ed command, and the
most potential for effective use.

As the simplest place to begin, recall the meaning of a trailing g after a sub­
stitute command. With

s/this/that/

and

s/this/that/g

the first one replaces the first 'this' on the line with 'that'. If there is more than
one 'this' on the line, the second form with the trailing g changes all of them.

Either form of the s command can be followed by p or I to 'print' or 'list'
(as described in the previous section) the contents of the line:

s/this/that/p
s/this/that/l
s/this/that / gp
s/this/that/gl

are all legal, and mean slightly different things. Make sure you know what the
differences are.

Of course, any s command can be preceded by one or two 'line numbers' to
specify that the substitution is to take place on a group of lines. Thus

---_ " -.

(
,..,--- ..

o

o

o

o

Advanced ed A-3

1,$s/mispell/misspell/

changes the first occurrence of 'mispell' to 'misspell' on every line of the file. But

1,$s/mispell/misspell/ g

changes every occurrence in every line (and this is more likely to be what you
wanted in this particular case).

You should also notice that if you add a p or I to the end of any of these
substitute commands, only the last line that got changed will be printed, not all
the lines. We will talk later about how to print all the lines that were modified.

The Undo Command 'u'

Occasionally you will make a substitution in a line, only to realize too late
that it was a ghastly mistake. The 'undo' command u lets you 'undo' the last
substitution: the last line that was substituted can be restored to its previous
state by typing the command

u

The Metacharacter '.'
As you have undoubtedly noticed when you use ed, certain characters have

unexpected meanings when they occur in the left side of a substitute command,
or in a search for a particular line. In the next several sections, we will talk
about these special characters, which are often called 'metacharacters'.

The first one is the period'.'. On the left side of a substitute command, or
in a search with '/ ... !" '.' stands for any single character. Thus the search

/x.y/

finds any line where 'x' and 'y' occur separated by a single character, as in

x+y
x-y
x y
x.y

and so on. (We will use to stand for a space whenever we need to make it visi­
ble.)

Since '.' matches a single character, that gives you a way to deal with funny
characters printed by l. Suppose you have a line that, when printed with the I
command, appears as

.... th \07is

and you want to get rid of the \07 (which represents the bell character, by the
way).

The most obvious solution is to try

s/\07//

but this will fail. (Try it.) The brute force solution, which most people would now
take, is to re-type the entire line. This is guaranteed, and is actually quite a rea­
sonable tactic if the line in question isn't too big, but for a very long line, re-

A-4- Advanced ed

typing is a bore. This is where the metacharacter '.' comes in handy. Since' \ 07'
really represents a single character, if we say

s/th.is/this/

the job is done. The'.' matches the mysterious character between the 'h' and
the 'i', whatever it is.

Bear in mind that since'.' matches any single character, the command

s/./ ,/
converts the first character on a line into a ',', which very often is not what you
intended.

As is true of many characters in ed, the '.' has several meanings, depending
on its context. This line shows all three:

.s/./ ./
The first '.' is a line number, the number of the line we are editing, which is (~--"
called 'line dot'. (We will discuss line dot more in Section 3.) The second'.' is a
metacharacter that matches any single character on that line. The third'.' is the
only one that really is an honest literal period. On the right side of a substitu-
tion, '.' is not special. If you apply this command to the line

Now is the time.

the result will be

.ow is the time.

which is probably not what you intended.

The Backslash '\'
Since a period means 'any character', the question naturally arises of what

to do when you really want a period. For example, how do you convert the line

Now is the time.

into

Now is the time?

The backslash '\' does the job. A backslash turns off any special meaning that
the next character might have; in particular, '\.' converts the'.' from a 'match
anything' into a period, so you can use it to replace the period in

Now is the time.

like this:

s/\./?/

The pair of characters '\.' is considered by ed to be a single real period.
The backslash can also be used when searching for lines that contain a spe­

cial character. Suppose you are looking for a line that contains

.PP

The search

--------------~----------------- .•.. ---.-- ... - .--

o

o

o

o

Advanced ed A -5

I·PPI
isn't adequate, for it will find a line like

THE APPLICATION OF ...

because the'.' matches the letter 'A'. But if you say

I\·PP I
you will find only lines that contain' .PP'.

The backslash can also be used to turn off special meanings for characters
other than'.'. For example, consider finding a line that contains a backslash.
The search

1\1
won't work, because the '\' isn't a literal '\', but instead means that the second
'I' no longer delimits the search. But by preceding a backslash with another one,
you can search for a literal backslash. Thus

1\\1
does work. Similarly, you can search for a forward slash' I' with

1\11
The backslash turns off the meaning of the immediately following '/' so that it
doesn't terminate the 1 ... 1 construction prematurely.

As an exercise, before reading further, find two substitute commands each of
which will convert the line

\x\. \y
into the line

\x\y

Here are several solutions; verify that each works as advertised.

s/\\\·11
s/x··/xl
s/··y/yl

A couple of miscellaneous notes about backslashes and special characters.
First, you can use any character to delimit the pieces of an s command: there is
nothing sacred about slashes. (But you must use slashes for context searching.)
For instance, in a line that contains a lot of slashes already, like

I I exec Ilsys.fort.go I I etc ...

you could use a colon as the delimiter - to delete all the slashes, type

s:1 ::g

Second, if # and @ are your character erase and line kill characters, you
have to type \# and \@; this is true whether you're talking to ed or any other
program.

A-6 Advanced ed

When you are adding text with a or i or c, backslash is not special, and you
should only put in one backslash for each one you really want.

The Dollar Sign '$'

The next metacharacter, the '$', stands for 'the end of the line'. As its most
obvious use, suppose you have the line

Now is the

and you wish to add the word 'time' to the end. Use the $ like this:

s/$/ time/

to get

Now is the time

Notice that a space is needed before 'time' in the substitute command, or you
will get

Now is thetime

As another example, replace the second comma in the following line with a
period without altering the first:

Now is the time, for all good men,

The command needed is

s/,$/./

The $ sign here provides context to make specific which comma we mean.
Without it, of course, the s command would operate on the first comma to pro­
duce

into

Now is the time. for all good men,

As another example, to convert

Now is the time.

Now is the time?

as we did earlier, we can use

s/.$/?/

Like'.', the '$' has multiple meanings depending on context. In the line

$s/$/$/

the first '$' refers to the last line of the file, the second refers to the end of that
line, and the third is a literal dollar sign, to be added to that line.

\ ,
'---

o

o

o

o

o

Advanced ed A-7

The Circumflex ''''
The circumflex (or hat or caret) '''' stands for the beginning of the line. For

example, suppose you are looking for a line that begins with 'the'. If you simply
say

/the/

you will in all likelihood find several lines that contain 'the' in the middle before
arriving at the one you want. But with

/"the/

you narrow the context, and thus arrive at the desired one more easily.
The other use of '''' is of course to enable you to insert something at the

beginning of a line:

places a space at the beginning of the current line.
Metacharacters can be combined. To search for a line that contains only the

characters

.PP

you can use the command

The Star '*'
Suppose you have a line that looks like this:

text x y text

where text stands for lots of text, and there are some indeterminate number of
spaces between the x and the y. Suppose the job is to replace all the spaces
between x and y by a single space. The line is too long to retype, and there are
too many spaces to count. What now?

This is where the metacharacter '*' comes in . handy. A character followed
by a star stands for as many consecutive occurrences of that character as possi­
ble. To refer to all the spaces at once, say

sIx *y/x y/

The construction' *' means 'as many spaces as possible'. Thus 'x *y' means
'an x, as many spaces as possible, then a y'.

The star can be used with any character, not just space. If the original
example was instead

text x----y text

then all '-' signs can be replaced by a single space with the command

s/x-*y/x y/

Finally, suppose that the line was

A-8 Advanced ed

text x y text

Can you see what trap lies in wait for the unwary? If you blindly type

s/x.*y/x y/

what will happen? The answer, naturally, is that it depends. If there are no
other x's or y's on the line, then everything works, but it's blind luck, not good
management. Remember that ' .' matches any single character? Then '. *'
matches as many single characters as possible, and unless you're careful, it can
eat up a lot more of the line than you expected. If the line was, for example, like
this:

text x text x •• •••••••••••••• y text y text

then saying

s/x.*y/x y/

will take everything from the first 'x' to the last 'y', which, in this example, is (-----"
undoubtedly more than you wanted. ', __

The solution, of course, is to turn off the special meaning of '.' with '\. ':

s/x\.*y/x y/

Now everything works, for '\. *' means 'as many periods as possible'.
There are times when the pattern' .*' is exactly what you want. For exam­

ple, to change

Now is the time for all good men

into

Now is the time.

use' .*' to eat up everything after the 'for':

s/ for.*/./

There are a couple of additional pitfalls associated with '*' that you should
be aware of. Most notable is the fact that 'as many as possible' means zero or
more. The fact that zero is a legitimate possibility is sometimes rather surpris­
ing. For example, if our line contained

text xy text x

and we said

six *y/x y/

y text

the first 'xy' matches this pattern, for it consists of an 'x', zero spaces, and a 'y'.
The result is that the substitute acts on the first 'xy', and does not touch the
later one that actually contains some intervening spaces.

The way around this, if it matters, is to specify a pattern like

/x *y/

which says 'an x, a space, then as many more spaces as possible, then a y', in C"
other words, one or more spaces. ___ '

o

o

o

o

Advanced ed A-9

The other startling behavior of ,*, is again related to the fact that zero is a
legitimate number of occurrences of something followed by a star. The command

s/x*/y/g

w hen applied to the line

abcdef

produces

yaybycydyeyfy

which is almost certainly not what was intended. The reason for this behavior is
that zero is a legal number of matches, and there are no x's at the beginning of
the line (so that gets converted into a 'y'), nor between the 'a' and the 'b' (so
that gets converted into a 'y'), nor ... and so on. Make sure you really want zero
matches; if not, in this case write

s/xx*/y/g

'xx*' is one or more x's.

The Brackets '[]'
Suppose that you want to delete any numbers that appear at the beginning

of all lines of a file. You might first think of trying a series of commands like

1,$s/"1 * / /
1,$s/"2* / /
1,$s/"3* / /

and so on, but this is clearly going to take forever if the numbers are at all long.
Unless you want to repeat the commands over and over until finally all numbers
are gone, you must get all the digits on one pass. This is the purpose of the
brackets [and].

The construction

[0123456789]

matches any single digit - the whole thing is called a 'character class'. With a
character class, the job is easy. The pattern '[0123456789]*' matches zero or
more digits (an entire number), so

1,$s/" [0123456789]* / /

deletes all digits from the beginning of all lines.
Any characters can appear within a character class, and just to confuse the

issue there are essentially no special characters inside the brackets; even the
backslash doesn't have a special meaning. To search for special characters, for
example, you can say

/[.\$"[]/
Within [...], the '[' is not special. To get a ']' into a character class, make it the
first character.

It's a nuisance to have to spell out the digits, so you can abbreviate them as
[O-g]; similarly, [a-z] stands for the lower case letters, and [A-Z] for upper case.

A-IO Advanced ed

As a final frill on character classes, you can specify a class that means 'none
of the following characters'. This is done by beginning the class with a 'A':

[A0-9]

stands for 'any character except a digit'. Thus you might find the first line that
doesn't begin with a tab or space by a search like

/A [A (space)(tab)]/

Within a character class, the circumflex has a special meaning only if it
occurs at the beginning. Just to convince yourself, verify that

/A[AA]/

finds a line that doesn't begin with a circumflex.

The Ampersand '&'
The ampersand '&' is used primarily to save typing. Suppose you have the

line

Now is the time

and you want to make it

Now is the best time

Of course you can always say

s/the/the best/

but it seems silly to have to repeat the 'the'. The' &' is used to eliminate the
repetition. On the right side of a substitute, the ampersand means 'whatever was
just matched', so you can say

s/the/ & best/

and the '&' will stand for 'the'. Of course this isn't much of a saving if the thing
matched is just 'the', but if it is something truly long or awful, or if it is some­
thing like '. *' which matches a lot of text, you can save some tedious typing.
There is also much less chance of making a typing error in the replacement text.
For example, to parenthesize a line, regardless of its length,

s/.*/(&)/

The ampersand can occur more than once on the right side:

s/the/ & best and & worst/

makes

Now is the best and the worst time

and

s/.*/&? &!!/

converts the original line into

Now is the time? Now is the time!!

~
'\..-_ .. ./

Advanced ed A-II

.n To get a literal ampersand, naturally the backslash is used to turn off the
"--./ special meaning:

o

o

o

o

s/ampersand/\&/

converts the word into the symbol. Notice that '&' is not special on the left side
of a substitute, only on the right side.

Substituting Newlines

ed provides a facility for splitting a single line into two or more shorter lines
by 'substituting in a newline'. As the simplest example, suppose a line has gotten
unmanageably long because of editing (or merely because it was unwisely typed).
If it looks like

text xy text

you can break it between the 'x' and the 'y' like this:

s/xy/x\
y/

This is actually a single command, although it is typed on two lines. Bearing in
mind that '\' turns off special meanings, it seems relatively intuitive that a '\' at
the end of a line would make the newline there no longer special.

You can in fact make a single line into several lines with this same mechan­
ism. As a large example, consider underlining the word 'very' in a long line by
splitting 'very' onto a separate line, and preceding it by the roff or nroff format­
ting command '. ul' .

text a very big text

The command

s/ very /\
.ul\
very\
/

converts the line into four shorter lines, preceding the word 'very' by the line
'.ul', and eliminating the spaces around the 'very', all at the same time.

When a newline is substituted in, dot is left pointing at the last line created.

Joining Lines

Lines may also be joined together, but this is done with the j command
instead of s. Given the lines

Now is
the time

and supposing that dot is set to the first of them, then the command

j

joins them together. No blanks are added, which is why we carefully showed a
blank at the beginning of the second line.

A-12 Advanced ed

All by itself, a j command joins line dot to line dot+ 1, but any contiguous C
set of lines can be joined. Just specify the starting and ending line numbers. For .-
example,

1,$jp

joins all the lines into one big one and prints it. (More on line numbers in Sec­
tion 3.)

Rearranging a Line with \ (..• \)
(This section should be skipped on first reading.) Recall that '&' is a short­

hand that stands for whatever was matched by the left side of an s command. In
much the same way you can capture separate pieces of what was matched; the
only difference is that you have to specify on the left side just what pieces you're
interested in.

Suppose, for instance, that you have a file of lines that consist of names in
the form

Smith, A. B.
Jones, c.

and so on, and you want the initials to precede the name, as in

A. B. Smith
C. Jones

It is possible to do this with a series of editing commands, but it is tedious and
error-prone. (It is instructive to figure out how it is done, though.)

The alternative is to 'tag' the pieces of the pattern (in this case, the last
name, and the initials), and then rearrange the pieces. On the left side of a sub­
stitution, if part of the pattern is enclosed between \(and \), whatever matched
that part is remembered, and available for use on the right side. On the right
side, the symbol '\1' refers to whatever matched the first \(... \) pair, '\2' to the
second \(... \), and so on.

The command

1,$s/"\([",]*\), *\(.*\)/\2 \1/
although hard to read, does the job. The first \(... \) matches the last name,
which is any string up to the comma; this is referred to on the right side with
'\1'~ The second \(... \) is whatever follows the comma and any spaces, and is
referred to as '\2'.

Of course, with any editing sequence this complicated, it 's foolhardy to sim­
ply run it and hope. The global commands g and v discussed in section 4 pro­
vide a way for you to print exactly those lines which were affected by the substi­
tute command, and thus verify that it did what you wanted in all cases.

3. LINE ADDRESSING IN THE EDITOR
The next general area we will discuss is that of line addressing in ed, that is,

how you specify what lines are to be affected by editing commands. We have
already used constructions like ("

o

o

o

o

Advanced ed A-13

1,$sjxjyj

to specify a change on all lines. And most users are long since familiar with
using a single newline (or return) to print the next line, and with

jthingj

to find a line that contains 'thing'. Less familiar, surprisingly enough, is the use
of

?thing?

to scan backwards for the previous occurrence of 'thing'. This is especially handy
when you realize that the thing you want to operate on is back up the page from
w here you are currently editing.

The slash and question mark are the only characters you can use to delimit
a context search, though you can use essentially any character in a substitute
command.

Address Arithmetic
The next step is to combine the line numbers like '.', '$', 'j ... /, and '?.?'

with '+' and '-'. Thus

$-1

is a command to print the next to last line of the current file (that is, one line
before line '$'). For example, to rec'all how far you got in a previous editing ses­
sion,

$-5,$p

prints the last six lines. (Be sure you understand why it's six, not five.) If there
aren't six, of course, you'll get an error message.

As another example,

.-3,.+3p

prints from three lines before where you are now (at line dot) to three lines after,
thus giving you a bit of context. By the way, the '+' can be omitted:

.-3,.3p

is absolutely identical in meaning.
Another area in which you can save typing effort in specifying lines is to use

'-' and '+' as line numbers by themselves.

by itself is a command to move back up one line in the file. In fact, you can
string several minus signs together to move back up that many lines:

moves up three lines, as does '-3'. Thus

-3,+3p

is also identical to the examples above.

A-I4

Since '-' is shorter than' .-1', constructions like

-,.s/bad/ goodl

Advanced ed

are useful. This changes 'bad' to 'good' on the previous line and on the current
line.

'+' and '-' can be used in combination with searches using 'I ... /' and '? .. 1',
and with '$'. The search

/thing/-

finds the line containing 'thing', and positions you two lines before it.

Repeated Searches
Suppose you ask for the search

/horrible thing I
and when the line is printed you discover that it isn't the horrible thing that you C.-~'
wanted, so it is necessary to repeat the search again. You don't have to re-type
the search, for the construction

1/
is a shorthand for 'the previous thing that was searched for', whatever it was.
This can be repeated as many times as necessary . You can also go backwards:

?1
(~

searches for the same thing, but in the reverse direction. \., ,
Not only can you repeat the search, but you can use 'I I' as the left side of a

substitute command, to mean 'the most recent pattern'.

Ihorrible thingl
.... ed prints line with 'horrible thing' ...

sllgood/p
To go backwards and change a line, say

?1s//goodl
Of course, you can still use the' &' on the right hand side of a substitute to stand
for whatever got matched:

I /sl 1& &/p
finds the next occurrence of whatever you searched for last, replaces it by two
copies of itself, then prints the line just to verify that it worked.

Default Line Numbers and the Value of Dot
One of the most effective ways to speed up your editing is always to know

w hat lines will be affected by a command if you don't specify the lines it is to act
on, and on what line you will be positioned (Le., the value of dot) when a com­
mand finishes. If you can edit without specifying unnecessary line numbers, you
can save a lot of typing.

As the most obvious example, if you issue a search command like

o

o

o

o

Advanced ed A-15

/thing/

you are left pointing at the next line that contains 'thing'. Then no address is
required with commands like s to make a substitution on that line, or p to print
it, or I to list it, or d to delete it, or a to append text after it, or c to change it,
or i to insert text before it.

What happens if there was no 'thing'? Then you are left right where you
were - dot is unchanged. This is also true if you were sitting on the only 'thing'
when you issued the command. The same rules hold for searches that use '? ... ?';
the only difference is the direction in which you search.

The delete command d leaves dot pointing at the line that followed the last
deleted line. When line '$' gets deleted, however, dot points at the new line '$'.

The line-changing commands a, c and i by default all affect the current line
- if you give no line number with them, a appends text after the current line, c
changes the current line, and i inserts text before the current line.

a, c, and i behave identically in one respect - when you stop appending,
changing or inserting, dot points at the last line entered. This is exactly what
you want for typing and editing on the fly. For example, you can say

a
... text .. .
... botch .. .

s/botch/correct/
a
... more text ...

(minor error)

(fix botched line)

without specifying any line number for the substitute command or for the second
append command. Or you can say

a
... text ...
... horrible botch ... (major error)

c (replace entire line)
... fixed up line ...

You should experiment to determine what happens if you add no lines with
a, c or i.

The r command will read a file into the text being edited, either at the end
if you give no address, or after the specified line if you do. In either case, dot
points at the last line read in. Remember that you can even say Or to read a file
in at the beginning of the text. (You can also say Oa or Ii to start adding text
at the beginning.)

The w command writes out the entire file. If you precede the command by
one line number, that line is written, while if you precede it by two line numbers,
that range of lines is written. The w command does not change dot: the current
line remains the same, regardless of what lines are written. This is true even if o you say something like

A-16

IA\.AB/,/A\.AE/w abstract

which involves a context search.

Advanced ed

Since the w command is so easy to use, you should save what you are edit­
ing regularly as you go along just in case the system crashes, or in case you do
something foolish, like clobbering what you're editing.

The least intuitive behavior, in a sense, is that of the s command. The rule
is simple - you are left sitting on the last line that got changed. If there were
no changes, then dot is unchanged.

To illustrate, suppose that there are three lines in the buffer, and you are sit-
ting on the middle one:

xl
x2
x3

Then the command

-,+s/x/y/p
prints the third line, which is the last one changed. But if the three lines had
been

xl
y2
y3

and the same command had been issued while dot pointed at the second line, ("
then the result would be to change and print only the first line, and that is w here ~,-
dot would be set.

Semicolon ';'
Searches with' I ... 1' and '? ... ?' start at the current line and move forward or

backward respectively until they either find the pattern or get back to the
current line. Sometimes this is not what is wanted. Suppose, for example, that
the buffer contains lines like this: i-

1\ _.

ab

bc

Starting at line I, one would expect that the command

la/,/b/p
prints all the lines from the 'ab' to the 'bc' inclusive. Actually this is not what ('
happens. Both searches (for 'a' and for 'b') start from the same point, and thus \. __ '
they both find the'line tl1at contains 'ab'. The result is to print a single line.

o

o

o

o

Advanced ed A -17

Worse, if there had been a line with a 'b' in it before the 'ab' line, then the print
command would be in error, since the second line number would be less than the
first, and it is illegal to try to print lines in reverse order.

This is because the comma separator for line numbers doesn't set dot as
each address is processed; each search starts from the same place. In ed, the
semicolon ';' can be used just like comma, with the single difference that use of a
semicolon forces dot to be set at that point as the line numbers are being
evaluated. In effect, the semicolon 'moves' dot. Thus in our example above, the
command

/a/;/b/p

prints the range of lines from 'ab' to 'bc', because after the 'a' is found, dot is set
to that line, and then 'b' is searched for, starting beyond that line.

This property is most often useful in a very simple situation. Suppose you
want to find the second occurrence of 'thing'. You could say

/thing/
//

but this prints the first occurrence as well as the second, and is a nuisance when
you know very well that it is only the second one you're interested in. The solu­
tion is to say

/thing/;/ /

This says to find the first occurrence of 'thing', set dot to that line, then find the
second and print only that.

Closely related is searching for the second previous occurrence of something,
as in

?something?;??

Printing the third or fourth or ... in either direction is left as an exercise.
Finally, bear in mind that if you want to find the first occurrence of some­

thing in a file, starting at an arbitrary place within the file, it is not sufficient to
say

1;/thing/

because this fails if 'thing' occurs on line 1. But it is possible to say

O;/thing/

(one of the few places where 0 is a legal line number), for this starts the search at
line 1.

Interrupting the Editor
As a final note on what dot gets set to, you should be aware that if you hit

the interrupt or delete or rubout or break key while ed is doing a command,
things are put back together again and your state is restored as much as possible
to what it was before the command began. Naturally, some changes are irrevoca­
ble - if you are reading or writing a file or making substitutions or deleting
lines, these will be stopped in some clean but unpredictable state in the middle
(which is why it is not usually wise to stop them). Dot mayor may not be

A-1S Advanced ed

changed.
Printing is more clear cut. Dot is not changed until the printing is done.

Thus if you print until you see an interesting line, then hit delete, you are not
sitting on that line or even near it. Dot is left where it was when the p command
was started.

4. GLOBAL COMMANDS
The global commands g and v are used to perform one or more editing com­

mands on all lines that either contain (g) or don't contain (v) a specified pattern.
As the simplest example, the command

g/UNJX/p

prints all lines that contain the word 'UNIX'. The pattern that goes between the
slashes can be anything that could be used in a line search or in a substitute
command; exactly the same rules and limitations apply.

As another example, then,

g/"\./p

prints all the formatting commands in a file (lines that begin with'. ').
The v command is identical to g, except that it operates on those line that

do not contain an occurrence of the pattern. (Don't look too hard for mnemonic
significance to the letter 'v'.) So

v/"\./p

prints all the lines that don't begin with'.' - the actual text lines.
The command that follows g or v can be anything:

g/"\./d

deletes all lines that begin with '.', and

g/"$/d

deletes all empty lines.
Probably the most useful command that can follow a global is the substitute

command, for this can be used to make a change and print each affected line for
verification. For example, we could change the word 'Unix' to 'UNIX' every­
where, and verify that it really worked, with

g/Unix/s/ /UNJX-/gp

Notice that we used '/ /' in the substitute command to mean 'the previous pat­
tern', in this case, 'Unix'. The p command is done on every line that matches
the pattern, not just those on which a substitution took place.

The global command operates by making two passes over the file. On the
first pass, all lines that match the pattern are marked. On the second pass, each
marked line in turn is examined, dot is set to that line, and the command exe­
cuted. This means that it is possible for the command that follows a g or v to
use addresses, set dot, and so on, quite freely.

g/"\.PP /+ c

o
Advanced ed A-19

prints the line that follows each' .PP' command (the signal for a new paragraph
in some formatting packages). Remember that '+' means 'one line past dot'.
And

g/topic/?A\.SH?l

searches for each line that contains 'topic', scans backwards until it finds a line
that begins' .SH' (a section heading) and prints the line that follows that, thus
showing the section headings under which 'topic' is mentioned. Finally,

g/ A \ .EQ/ +,/ A \ .EN /_p

prints all the lines that lie between lines beginning with '.EQ' and '.EN' format­
ting commands.

The g and v commands can also be preceded by line numbers, in which case
the lines searched are only those in the range specified. o Multi-line Global Commands

o

o

o

It is possible to do more than one command under the control of a global
command, although the syntax for expressing the operation is not especially
natural or pleasant. As an example, suppose the task is to change 'x' to 'y' and
'a' to 'b' on all lines that contain 'thing'. Then

g/thing/s/x/y /\
s/a/b/

is sufficient. The '\' signals the g command that the set of commands continues
on the next line; it terminates on the first line that does not end with '\'. (As a
minor blemish, you can't use a substitute command to insert a newline within a g
command.)

You should watch out for this problem: the command

g/x/s//y/\
s/a/b/

does not work as you expect. The remembered pattern is the last pattern that
was actually executed, so sometimes it will be 'x' (as expected), and sometimes it
will be 'a' (not expected). You must spell it out, like this:

g/x/s/x/y/\
s/a/b/

It is also possible to execute a, c and i commands under a global command;
as with other multi-line constructions, all that is needed is to add a '\' at the end
of each line except the last. Thus to add a '.nf' and' .sp' command before each
'.EQ' line, type

g/A\.EQ/i\
.nf\
.sp

There is no need for a final line containing a '.' to terminate the i command,
unless there are further commands being done under the global. On the other
hand, it does no harm to put it in either.

A-20 Advanced ed

5. CUT AND PASTE WITH UNIX COMMANDS
One editing area in which non-programmers seem not very confident is in _ ... ---

what might be called 'cut and paste' operations - changing the name of a file,
making a copy of a file somewhere else, moving a few lines from one place to
another in a file, inserting one file in the middle of another, splitting a file into
pieces, and splicing two or more files together.

Yet most of these operations are actually quite easy, if you keep your wits
about you and go cautiously. The next several sections talk about cut and paste.
We will begin with the UNJX commands for moving entire files around, then dis­
cuss ed commands for operating on pieces of files.

Changing the Name of a File
You have a file named 'memo' and you want it to be called 'paper' instead.

How is it done?
The UNJX program that renames files is called mv (for 'move'); it 'moves' the

file from one name to another, like this:

mv memo paper

That's all there is to it: mv from the old name to the new name.

mv oldname newname

Warning: if there is already a file around with the new name, its present contents
will be silently clobbered by the information from the other file. The one excep­
tion is that you can't move a file to itself -

mv x x

is illegal.

Making a Copy of a File
Sometimes what you want is a copy of a file - an entirely fresh version.

This might be because you want to work on a file, and yet save a copy in case
something gets fouled up, or just because you're paranoid.

In any case, the way to do it is with the cp command. (cp stands for 'copy';
the system is big on short command names, which are appreciated by heavy
users, but sometimes a strain for novices.) Suppose you have a file called 'good'
and you want to save a copy before you make some dramatic editing changes.
Choose a name - 'savegood' might be acceptable - then type

cp good savegood

This copies 'good' onto 'savegood', and you now have two identical copies of the
file 'good'. (If 'savegood' previously contained something, it gets overwritten.)

Now if you decide at some time that you want to get back to the original
state of 'good', you can say

mv savegood good

(if you're not interested in 'savegood' any more), or

cp save good good

o

1\
U

o

o

o

Advanced ed A-2l

if you still want to retain a safe copy.
In summary, mv just renames a file; cp makes a duplicate copy. Both of

them clobber the 'target' file if it already exists, so you had better be sure that's
what you want to do before you do it.

Removing a File

If you decide you are really done with a file forever, you can remove it with
the rm command:

rmsavegood

throws away (irrevocably) the file called 'savegood'.

Putting Two or More Files Together
The next step is the falniliar one of collecting two or more files into one big

one. This will be needed, for example, when the author of a paper decides that
several sections need to be combined into one. There are several ways to do it, of
which the cleanest, once you get used to it, is a program called cat. (Not all pro­
grams have two-letter names.) cat is short for 'concatenate', which is exactly
what we want to do.

Suppose the job is to combine the files 'file!' and 'file2' into a single file
called 'bigfile'. If you say

cat file

the contents of 'file' will get printed on your terminal. If you say

cat filel file2

the contents of 'filel' and then the contents of 'file2' will both be printed on your
terminal, in that order. So cat combines the files, all right, but it's not much
help to print them on the terminal - we want them in 'bigfile'.

Fortunately, there is a way. You can tell the system that instead of printing
on your terminal, you want the same information put in a file. The way to do it
is to add to the command line the character > and the name of the file where
you want the output to go. Then you can say

cat filel file2 > bigfile

and the job is done. (As with cp and mv, you're putting something into 'bigfile',
and anything that was already there is destroyed.)

This ability to 'capture' the output of a program is one of the most useful
aspects of the system. Fortunately it's not limited to the cat program - you
can use it with any program that prints on your terminal. We'll see some more
uses for it in a moment.

Naturally, you can combine several files, not just two:

cat filel file2 file3 ... > bigfile

collects a whole bunch.
Question: is there any difference between

cp good savegood

A-22 Advanced ed

and

cat good > savegood

Answer: for most purposes, no. You might reasonably ask why there are two
programs in that case, since cat is obviously all you need. The answer is that cp
will do some other things as well, which you can investigate for yourself by read­
ing the manual. For now we'll stick to simple usages.

Adding Something to the End of a File

Sometimes you want to add one file to the end of another. We have enough
building blocks now that you can do it; in fact before reading further it would be
valuable if you figured out how. To be specific, how would you use cp, mv
and/or cat to add the file 'good!' to the end of the file 'good'?

You could try

cat good good! >temp
mv temp good

which is probably most direct. You should also understand why

cat good good! > good

doesn't work. (Don't practice with a good 'good'!)

The easy way is to use a variant of >, called> >. In fact, > > is identical
to > except that instead of clobbering the old file, it simply tacks stuff on at the
end. Thus you could say

cat good! > > good

and 'goodl' is added to the end of 'good'. (And if 'good' didn't exist, this makes
a copy of 'good!' called 'good'.)

6. CUT AND PASTE WITH THE EDITOR
Now we move on to manipulating pieces of files - individual lines or groups

c:~

of lines. This is another area where new users seem unsure of themselves. ('
\,­

Filenames
The first step is to ensure that you know the ed commands for reading and

writing files. Of course you can't go very far without knowing rand w. Equally
useful, but less well known, is the 'edit' command e. Within ed, the command

e newfile

says 'I want to edit a new file called newfile, without leaving the editor.' The e
command discards whatever you're currently working on and starts over on
newfile. It's exactly the same as if you had quit with the q command, then re­
entered ed with a new file name, except that if you have a pattern remembered,
then a command like / / will still work.

If you enter ed with the command

ed file

ed remembers the name of the file, and any subsequent e, r or w commands that
don't contain a filename will refer to this remembered file. Thus

------------------''''''---_._ .. _-'-" "

c'

o

o

o

o

o

Advanced ed

ed filel
... (editing) ...

w (writes back in fileI)
e file2 (edit new file, without leaving editor)
... (editing on file2) ...

w (wri tes back on file2)

A-23

(and so on) does a series of edits on various files without ever leaving ed and
without typing the name of any file more than once. (As an aside, if you exam­
ine the sequence of commands here, you can see why many UNIX systems use e
as a synonym for ed.)

You can find out the remembered file name at any time with the f com­
mand; just type f without a file name. You can also change the name of the
remembered file name with f; a useful sequence is

ed precious
f junk
... (editing) ...

which gets a copy of a precious file, then uses f to guarantee that a careless w
command won't clobber the original.

Inserting One File into Another
Suppose you have a file called 'memo', and you want the file called 'table' to

be inserted just after the reference to Table 1. That is, in 'memo' somewhere is a
line that says

Table 1 shows that ...
and the data contained in 'table' has to go there, probably so it will be formatted
properly by nroft' or troft'. l';Iow what?

This one is easy. Edit 'memo', find 'Table 1', and add the file 'table' right
there:

ed memo
/Table 1/
Table 1 shows that ... [response from edJ
.r table

The critical line is the last one. As we said earlier, the r command reads a file;
here you asked for it to be read in right after line dot. An r command without
any address adds lines at the end, so it is the same as $r.

Writing out Part of a File
The other side of the coin is writing out part of the document you're editing.

For example, maybe you want to split out into a separate file that table from the
previous example, so it can be formatted and tested separately. Suppose that in
the file being edited we have

.TS
... [lots of stuff]

.TE

which is the way a table is set up for the tbl program. To isolate the table in a

A-24 Advanced ed

separate file called 'table', first 'find the start of the table (the '. TS' line), then
write out the interesting part:

/A\.TS/
• TS fed prints the line it found}
.,/A\. TE/w table

and the job is done. If you are confident, you can do it all at once with

/A\.TS/;/A\.TE/w table

The point is that the w command can write out a group of lines, instead of
the whole file. In fact, you can write out a single line if you like; just give one
line number instead of two. For example, if you have just typed a horribly com­
plicated line and you know that it (or something like it) is going to be needed
later, then save it - don't re-type it. In the editor, say

a
.. .lots of stuff .. .
... horrible line .. .

• w temp
a
••• more stuff •••

• r temp
a
••• more stuff •••

This last example is worth studying, to be sure you appreciate what's going on.

Moving Lines Around

Suppose you want to move a paragraph from its present position in a paper
to the end. How would you do it? As a concrete example, suppose each para­
graph in the paper begins with the formatting command '.PP'. Think about it
and write down the details before reading on.

The brute force way (not necessarily bad) is to write the paragraph onto a
temporary file, delete it from its current position, then read in the temporary file
at the end. Assuming that you are sitting on the '.PP' command that begins the
paragraph, this is the sequence of commands:

.,/A\.PP /-w temp

.,/ /-d
$r temp

That is, from where you are now (' .') until one line before the next '.PP'
(,/A\.PP/_') write onto 'temp'. Then delete the same lines. Finally, read 'temp'
at the end.

As we said, that's the brute force way. The easier way (often) is to use the
move command m that ed provides - it lets you do the whole set of operations ('"
at one crack, without any temporary file. ,-, .

o

o

o

o

o

Advanced ed A-25

The m command is like many other ed commands in that it takes up to two
line numbers in front that tell what lines are to be affected. It is also followed by
a line n urn ber that tells where the lines are to go. Th us

line!, line2 m line3

says to move all the lines between 'line!' and 'line2' after 'line3'. Naturally, any
of 'line!' etc., can be patterns between slashes, $ signs, or other ways to specify
lines.

Suppose again that you're sitting at the first line of the paragraph. Then
you can say

.,/"\.PP /-m$

That's all.
As another example of a frequent operation, you can reverse the order of two

adjacent lines by moving the first one to after the second. Suppose that you are
positioned at the first. Then

m+
does it. It says to move line dot to after one line after line dot. If you are posi­
tioned on the second line,

m-

does the interchange.
As you can see, the m command is more succinct and direct than writing,

deleting and re-reading. When is brute force better anyway? This is a matter of
personal taste - do what you have most confidence in. The main difficulty with
the m command is that if you use patterns to specify both the lines you are mov­
ing and the target, you have to take care that you specify them properly, or you
may well not move the lines you thought you did. The result of a botched m
command can be a ghastly mess. Doing the job a step at a time makes it easier
for you to verify at each step that you accomplished what you wanted to. It's
also a good idea to issue a w command before doing anything .complicated; then
if you goof, it's easy to back up to where you were.

Marks
ed provides a facility for marking a line with a particular name so you can

later reference it by name regardless of its actual line number. This can be
handy for moving lines, and for keeping track of them as they move. The mark
command is k; the command

kx

marks the current line with the name 'x'. If a line number precedes the k, that
line is marked. (The mark name must be a single lower case letter.) Now you
can refer to the marked line with the address

, x

Marks are most useful for moving things around. Find the first line of the
block to be moved, and mark it with ' a. Then find the last line and mark it
with' b. Now position yourself at the place where the stuff is to go and say

A-26 Advanced ed

, a,' bm.

Bear in mind that only one line can have a particular mark name associated
with it at any given time.

Copying Lines

We mentioned earlier the idea of saving a line that was hard to type or used
often, so as to cut down on typing time. Of course this could be more than one
line; then the saving is presumably even greater.

ed provides another command, called t (for 'transfer') for making a copy of
a group of one or more lines at any point. This is often easier than writing and
reading.

The t command is identical to the m command, except that instead of mov­
ing lines it simply duplicates them at the place you named. Thus

1,t

duplicates the entire contents that you are editing. A more common use for t is
for creating a series of lines that differ only slightly. For example, you can say

a

t.
s/x/y/
t.
s/y/z/

and so on.

x (long line)

(make a copy)
(change it a bit)
(make third copy)
(change it a bit)

The Temporary Escape 'I'

Sometimes it is convenient to be able to temporarily escape from the editor
to do some other UNIX command, perhaps one of the file copy or move commands
discussed in section 5, without leaving the editor. The 'escape' command! pro­
vides a way to do this.

If you say

!any UNIX command

your current editing state is suspended, and the UNIX command you asked for is
executed. When the command finishes, ed will signal you by printing another !;
at that point you can resume editing.

You can really do any UNIX command, including another ed. (This is quite
common, in fact.) In this case, you can even do another !.

7. SUPPORTING TOOLS
There are several tools and techniques that go along with the editor, all of

which are relatively easy once you know how ed works, because they are all
based on the editor. In this section we will give some fairly cursory examples of
these tools, more to indicate their existence than to provide a complete tutorial. r'~
More information on each can be found in [3]. - '

o

o

o

o

o

------------------- --- - ------------------~~-~~---

Advanced ed A-27

Grep

Sometimes you want to find all occurrences of some word or pattern in a set
of files, to edit them or perhaps just to verify their presence or absence. It may
be possible to edit each file separately and look for the pattern of interest, but if
there are many files this can get very tedious, and if the files are really big, it
may be impossible because of limits in ed.

The program grep was invented to get around these limitations. The search
patterns that we have described in the paper are often called 'regular expres­
sions', and 'grep' stands for

g/re/p

That describes exactly what grep does - it prints every line in a set of files that
contains a particular pattern. Thus

grep 'thing' file 1 file2 file3 ...

finds 'thing' wherever it occurs in any of the files 'filel', 'file2', etc. grep also
indicates the file in which the line was found, so you can later edit it if you like.

The pattern represented by 'thing' can be any pattern you can use in the
editor, since grep and ed use exactly the same mechanism for pattern searching.
It is wisest always to enclose the pattern in the single quotes' ... ' if it contains
any non-alphabetic characters, since many such characters also mean something
special to the UNlX command interpreter (the 'shell'). If you don't quote them,
the command interpreter will try to interpret them before grep gets a chance.

There is also a way to find lines that don't contain a pattern:

grep -v 'thing' filel file2 ...

finds all lines that don't contains 'thing'. The -v must occur in the position
shown. Given grep and grep -v, it is possible to do things like selecting all
lines that contain some combination of patterns. For example, to get all lines
that contain 'x' but not 'y':

grep x file... I grep -v y

(The notation I is a 'pipe', which causes the output of the first command to be
used as input to the second command; see [2].)

Editing Scripts
If a fairly complicated set of editing operations is to be done on a whole set

of files, the easiest thing to do is to make up a 'script', Le., a file that contains
the operations you want to perform, then apply this script to each file in turn.

For example, suppose you want to change every 'Unix' to 'UNIX' and every
'Gcos' to 'GeOS' in a large number of files. Then put into the file 'script' the
lines

g/Unix/s/ /UNIX/g
g/Gcos/s/ /GCOS/g
w
q

Now you can say

A-28

ed file1 <script
ed file2 < script

Advanced ed

This causes ed to take its commands from the prepared script. Notice that the
w hole job has to be planned in advance.

And of course by using the UNIX command interpreter, you can cycle
through a set of files automatically, with varying degrees of ease.

Sed
sed ('stream editor') is a version of the editor with restricted capabilities but

which is capable of processing unlimited amounts of input. Basically sed copies
its input to its output, applying one or more editing commands to each line of
input.

As an example, suppose that we want to do the 'Unix' to 'UNIX' part of the (~_ -_,_
example given above, but without rewriting the files. Then the command

sed ' s/Unix/UNIX/ g' file1 file2 ...

applies the command 's/Unix/UNIX/g' to all lines from 'filel' , 'file2', etc., and
copies all lines to the output. The advantage of using sed in such a case is that
it can be used with input too large for ed to handle. All the output can be col­
lected in one place, either in a file or perhaps piped into another program.

If the editing transformation is so complicated that more than one editing
command is needed, commands can be supplied from a file, or on the command ('
line, with a slightly more complex syntax. To take commands from a file, for \
example,

sed -f cmdfile input-files ...

sed has further capabilities, including conditional testing and branching,
which we cannot go into here.

References
[1] Brian W. Kernighan, A Tutorial Introduction to the UNIX Text Editor, Bell

Laboratories internal memorandum.
[2] Brian W. Kernighan, UNIX For Beginners, Bell Laboratories internal

memorandum.
[3] Ken L. Thompson and Dennis M. Ritchie, The UNIX Programmer's Manual.

Bell Laboratories.

,-­
/

\

o

o

o

o

o

Appendix B: Writing Papers With nrofl' Using -me

Eric P. Allman

Electronics Research Laboratory
University of California, Berkeley

Berkeley, California 94720

This document describes the text processing facilities available on the
UNIX operating system via NROFF and the -me macro package. It is
assumed that the reader already is generally familiar with the UNIX
operating system and a text editor such as ex. This is intended to be a
casual introduction, and as such not all material is covered. In particular,
many variations and additional features of the -me macro package are not
explained. For a complete discussion of this and other issues, see The -me
Reference Manual and The NROFF/TROFF Reference Manual.

NROFF, a computer program that runs on the UNIX operating sys­
tem, reads an input file prepared by the user and outputs a formatted
paper suitable for publication or framing. The input consists of text, or
words to be printed, and requests, which give instructions to the NROFF
program telling how to format the printed copy.

Section 1 describes the basics of text processing. Section 2 describes
the basic requests. Section 3 introduces displays. Annotations, such as
footnotes, are handled in section 4. The more complex requests which are
not discussed in section 2 are covered in section 5. Finally, section 6
discusses things you will need to know if you want to typeset documents.
If you are a novice, you probably won't want to read beyond section 4
until you have tried some of the basic features out.

When you have your raw text ready, call the NROFF formatter by
typing as a request to the UNIX shell:

nroff -me - T type files

where type describes the type of terminal you are outputting to. Common
values are dtc for a DTC 300s (daisy-wheel type) printer and lpr for the
line printer. If the -T flag is omitted, a "lowest common denominator"
terminal is assumed; this is good for previewing output on most terminals.
A complete description of options to the NROFF command can be found in
The NROFF/ TROFF Reference Manual.

Using nroff and -me B-1

Using nroff and -me B-2

The word argument is used in this manual to mean a word or number
which appears on the same line as a request which modifies the meaning of
that request. For example, the request

.sp

spaces one line, but

.sp 4

spaces four lines. The number 4 is an argument to the .sp request which
says to space four lines instead of one. Arguments are separated from the
request and from each other by spaces.

1. Basics of Text Processing
The primary function of NROFF is to collect words from input lines, fill

output lines with those words, iustify the right hand margin by inserting extra
spaces in the line, and output the result. For example, the input:

Now is the time
for all good men
to come to the aid
of their party.
Four score and seven
years ago, ...

will be read, packed onto output lines, and justified to produce:

Now is the time for all good men to come to the aid of their party.
Four score and seven years ago, ...

Sometimes you may want to start a new output line even though the line you
are on is not yet full; for example, at the end of a paragraph. To do this you
can cause a break, which starts a new output line. Some requests cause a
break automatically, as do blank input lines and input lines beginning with a
space.

Not all input lines are text to be formatted. Some of the input lines are
requests which describe how to format the text. Requests always have a
period or an apostrophe (" , ") as the first character of the input line.

The text formatter also does more complex things, such as automatically
numbering pages, skipping over page folds, putting footnotes in the correct
place, and so forth.

I can offer you a few hints for preparing text for input to NROFF. First,
keep the input lines short. Short input lines are easier to edit, and NROFF
will pack words onto longer lines for you anyhow. In keeping with this, it is
helpful to begin a new line after every period, comma, or phrase, since com­
mon corrections are to add or delete sentences or phrases. Second, do not put
spaces at the end of lines, since this can sometimes confuse the NROFF proces­
sor. Third, do not hyphenate words at the end of lines (except words that
should have hyphens in them, such as "mother-in-law"); NROFF is smart C"

o

o

o

o

o

Using nroff and -me

enough to hyphenate words for· you as needed, but is not smart enough to take
hyphens out and join a word back together. Also, words such as "mother-in­
law" should not be broken over a-line, since then you will get a space where
not wanted, such as "mother- in-law".

2. Basic Requests

2.1. Paragraphs
Paragraphs are begun by using the .pp request. For example, the

input:

.pp
Now is the time for all good men
to come to the aid of their party.
Four score and seven years ago, ...

produces a blank line followed by an indented first line. The result is:

Now is the time for all good men to come to the aid of their
party. Four score and seven years ago, ...

Notice that the sentences of the paragraphs must not begin with a
space, since blank lines and lines begining with spaces cause a break. For
example, if I had typed:

.pp
Now is the time for all good men

to come to the aid of their party.
Four score and seven years ago, ...

The output would be:

Now is the time for all good men
to come to the aid of their party. Four score and seven years

ago, ...

A new line begins after the word "men" because the second line began with
a space character.

There are many fancier types of paragraphs, which will be described
later.

2.2. Headers and Footers
Arbitrary headers and footers can be put at the top and bottom of

every page. Two requests of the form .he title and .fo title define the titles
to put at the head and the foot of every page, respectively. The titles are
called three-part titles, that is, there is a left-justified part, a centered part,
and a right-justified part. To separate these three parts the first character
of title (whatever it may be) is used as a delimiter. Any character may be
used, but backslash and double quote marks should be avoided. The per­
cent sign is replaced by the current page number whenever found in the

Using nroff and -me B-4

title. For example, the input:

h "%" . e 0

.fo ' Jane Jones' 'My Book'

results in the page number centered at the top of each page, "Jane Jones"
in the lower left corner, and "My Book" in the lower right corner.

2.3. Double Spacing
NROFF will double space output text automatically if you use the

request .Is 2, as is done in this section. You can revert to single spaced

mode by typing .Is 1.

2.4. Page Layout
A number of requests allow you to change the way the printed copy

looks, sometimes called the layout of the output page. Most of these
requests adjust the placing of "white space" (blank lines or spaces). In
these explanations, characters in italics should be replaced with values you
wish to use; bold characters represent characters which should actually be
typed.

The .bp request starts a new page.

The request .sp N leaves N lines of blank space. N can be omitted
(meaning skip a single line) or can be of the form Ni (for N inches) or Nc
(for N centimeters). For example, the input:

.sp 1.5i
My thoughts on the subject
.sp

leaves one and a half inches of space, followed by the line "My thoughts on
the subject", followed by a single blank line.

The .in + N request changes the amount of white space on the left of
the page (the indent). The argument N can be of the form +N (meaning
leave N spaces more than you are already leaving), -N (meaning leave less
than you do now), or just N (meaning leave exactly N spaces). N can be of
the form Ni or N c also. For example, the input:

initial text
.in 5
some text
.in +li
more text
.in -2c
final text

(" ..
',,-/.

produces "some text" indented exactly five spaces from the left margin, r'\
"more text" indented five spaces plus one inch from the left margin (fifteen '-.-

o

C)

o

o

o

Using nroff and -me B-5

spaces on a pica typewriter), and "final text" indented five spaces plus one
inch minus two centimeters from the margin. That is, the output is:

initial text
some text

more text
final text

The .ti +N (temporary indent) request is used like .in +N when the
indent should apply to one line only, after which it should revert to the pre­
vious indent. For example, the input:

.in Ii

.ti 0
Ware, JamesR. The Best of Confucius,
Halcyon House, 1950.
An excellent book containing translations of
most of Confucius' most delightful sayings.
A definite must for anyone interested in the early foundations
of Chinese philosophy.

produces:
Ware, James R. The Best of Confucius, Halcyon House, 1950. An excellent

book containing translations of most of Confucius' most
delightful sayings. A definite must for anyone interested in
the early foundations of Chinese philosophy.

Text lines can be centered by using the .ce request. The line after the
.ce is centered (horizontally) on the page. To center more than one line,
use .ce N (where N is the number of lines to center), followed by the N
lines. If you want to center many lines but don't want to count them,
type:

.ce 1000
lines to center
.ce 0

The .ce 0 request tells NROFF to center zero more lines, in other words,
stop centering.

All of these requests cause a break; that is, they always start a new
line. If you want to start a new line without performing any other action,
use .hr.

2.5. Underlining
Text can be underlined using the .ul request. The .ul request causes

the next input line to be underlined when output. You can underline multi­
ple lines by stating a count of input lines to underline, followed by those
lines (as with the .ce request). For example, the input:

Using nroff and -me

.u12
Notice that these two input lines
are underlined.

B-6

will underline those eight words in NROFF. (In TROFF they will be set in
italics.)

3. Displays
Displays are sections of text to be set off from the body of the paper.

Major quotes, tables, and figures are types of displays, as are all the examples
used in this document. All displays except centered blocks are output single
spaced.

3.1. Major Quotes
Major quotes are quotes which are several lines long, and hence are set (---"

in from the rest of the text without quote marks around them. These can \
be generated using the commmands .(q and .)q to surround the quote. For
example, the input:

As Weizenbaum points out:
.(q
It is said that to explain is to explain away.
This maxim is nowhere so well fulfilled
as in the areas of computer programming, ...
.)q

generates as output:

As Weizenbaum points out:

It is said that to explain is to explain away. This maxim is nowhere so
well fulfilled as in the areas of computer programming, ...

3.2. Lists
A list is an indented, single spaced, unfilled display. Lists should be

used when the material to be printed should not be filled and justified like
normal text, such as columns of figures or the examples used in this paper.
Lists are surrounded by the requests .(1 and .)1. For example, type:

Alternatives to avoid deadlock are:
.(1
Lock in a specified order
Detect deadlock and back out one process
Lock all resources needed before proceeding
.)1

will produce:
Alternatives to avoid deadlock are:

Lock in a specified order
Detect deadlock and back out one process

o

o

o

o

o

-_.-_._._._. __ ... __ . __ _ _ ... _._ ... _ ... -_._._ .. _---

Using nroff and -me B-7

Lock all resources needed before proceeding

3.3. Keeps
A keep is a display of lines which are kept on a single page if possible.

An example of where you would use a keep might be a diagram. Keeps
differ from lists in that lists may be broken over a page boundary whereas
keeps will not.

Blocks are the basic kind of keep. They begin with the request .(b and
end with the request .)b. If there is not room on the current page for
everything in the block, a new page is begun. This has the unpleasant
effect of leaving blank space at the bottom of the page. When this is not
appropriate, you can use the alternative, called floating keeps.

Floating keeps move relative to the text. Hence, they are good for
things which will be referred to by name, such as "See figure 3". A floating
keep will appear at the bottom of the current page if it will fit; otherwise, it
will appear at the top of the next page. Floating keeps begin with the line
.(z and end with the line .)z. For an example of a floating keep, see figure
1. The .hl request is used to draw a horizontal line so that the figure
stands out from the text.

3.4. Fancier Displays
Keeps and lists are normally collected in nojill mode, so that they are

good for tables and such. If you want a display in fill mode (for text), type
.{l F (Throughout this section, comments applied to .(1 also apply to .(b
and .(z). This kind of display will be indented from both margins. For
example, the input:

.(z

.hl
Text of keep to be floated .
. sp
.ce
Figure 1. Example of a Floating Keep .
. hl
.)z

Figure 1. Example of a Floating Keep.

Using nroff and -me

.(1 F
And now boys and girls,
a newer, bigger, better toy than ever before!
Be the first on your block to have your own computer!
Yes kids, you too can have one of these modern
data processing devices.
You too can produce beautifully formatted papers
without even batting an eye!
.)1

will be output as:

And now boys and girls, a newer, bigger, better toy than ever be­
fore! Be the first on your block to have your own computer! Yes
kids, you too can have one of these modern data processing devices.
You too can produce beautifully formatted papers without even bat­
ting an eye!

B-8

Lists and blocks are also normally indented (floating keeps are nor­
mally left justified). To get a left-justified list, type .(1 L. To get a list
centered line-far-line, type .(1 C. For example, to get a filled, left justified
list, enter:

.(1 L F
text of block
.)1

The input:

.(1
first line of unfilled display
more lines
•)1

produces the indented text:

first line of unfilled display
more lines

Typing the character L after the .(1 request produces the left justified
result:

first line of unfilled display
more lines

Using C instead of L produces the line-at-a-time centered output:

first line of unfilled display
more lines

C
~

/ . -" ... ~

Sometimes it may be that you want to center several lines as a group,
rather than centering them one line at a time. To do this use centered
blocks, which are surrounded by the requests .(c and •)c. All the lines are
centered as a unit, such that the longest line is centered and the rest are (\

'- --

o

o

o

o

o

Using nroft' and -me B-9

lined up around that line. Notice that lines do not move relative to each
other using centered blocks, whereas they do using the C argument to
keeps.

Centered blocks are not keeps, and may be used in conjunction with
keeps. For example, to center a group of lines as a unit and keep them on
one page, use:

.(b L

.(c
first line of unfilled display
more lines
.)c
.)b

to produce:

first line of unfilled display
more lines

If the block requests (.(b and .)b) had been omitted the result would have
been the same, but with no guarantee that the lines of the centered block
would have all been on one page. Note the use of the L argument to .(b;
this causes the centered block to center within the entire line rather than
within the line minus the indent. Also, the center requests must be nested
inside the keep requests.

4. Annotations
There are a number of requests to save text for later printing. Footnotes

are printed at the bottom of the current page. Delayed text is intended to be
a variant form of footnote; the text is printed only when explicitly called for,
such as at the end of each chapter. Indexes are a type of delayed text having
a tag (usually the page number) attached to each entry after a row of dots.
Indexes are also saved until called for explicitly.

4.1. Footnotes
Footnotes begin with the request .(f and end with the request.)f. The

current footnote number is maintained automatically, and can be used by
typing \ **, to produce a footnote number!. The number is automatically
incremented after every footnote. For example, the input:

lLike this.

Using nroff and -me

.(q
A man who is not upright
and at the same time is presumptuous;
one who is not diligent and at the same time is ignorant;
one who is untruthful and at the same time is incompetent;
such men I do not count among acquaintances. \ **
.(f
**James R. Ware,
.ul
The Best of Confucius,
Halcyon House, 1950.
Page 77 .
.)f
.)(1

generates the result:

B-IO

A man who is not upright and at the same time is presumptuous; one who
is not diligent and at the same time is ignorant; one who is untruthful and
at the same time is incompetent; such men I do not count among acquain-
tances.2

It is important that the footnote appears inside the quote, so that you can
be sure that the footnote will appear on the same page as the quote.

4.2. Delayed Text
Delayed text is very similar to a footnote except that it is printed when

called for explicitly. This allows a list of references to appear (for example)
at the end of each chapter, as is the convention in some disciplines. Use
*# on delayed text instead of ** as on footnotes.

If you are using delayed text as your standard reference mechanism,
you can still use footnotes, except that you may want to reference them
with special characters* rather than numbers. I"~

I.

4.3. Indexes
An "index" (actually more like a table of contents, since the entries are

not sorted alphabetically) resembles delayed text, in that it is saved until
called for. However, each entry has the page number (or some other tag)
appended to the last line of the index entry after a row of dots.

Index entries begin with the request .(x and end with .)x. The .)x
request may have a argument, which is the value to print as the "page
number". It defaults to the current page number. If the page number
given is an underscore ("_") no page number or line of dots is printed at
all. To get the line of dots without a page number, type .)x "", which

2Jarnes R. Ware, The Best of Confucius, Halcyon House, 1950. Page 77.

*Such as an asterisk.

,~,-

o

o

o

o

o

Using nroff and -me

specifies an explicitly null page number.

The .xp request prints the index.

For example, the input:

.(x
Sealing wax
.)x
.(x
Cabbages and kings
.)x _
.(x
Why the sea is boiling hot
.)x 2.5a
.(x
Whether pigs have wings
.)x ""
.(x
This is a terribly long index entry, such as might be used
for a list of illustrations, tables, or figures; I expect it to
take at least two lines .
.)x
.xp

generates:
Sealing wax
Cab bages and kings

B-11

11

Why the sea is boiling hot 2.5a
Whether pigs have wings .. .
This is a terribly long index entry, such as might be used for a list

of illustrations, tables, or figures; I expect it to take at least
two lines. 11

The .(x request may have a single character argument, specifying the
"name" of the index; the normal index is x. Thus, several "indicies" may
be maintained simultaneously (such as a list of tables, table of contents,
etc.).

Notice that the index must be printed at the end of the paper, rather
than at the beginning where it will probably appear (as a table of contents);
the pages may have to be physically rearranged after printing.

5. Fancier Features
A large number of fancier requests exist, notably requests to provide other

sorts of paragraphs, numbered sections of the form 1.2.3 (such as used in this
document), and multi column output.

Using nroff and -me B-12

5.1. More Paragraphs
Paragraphs generally start with a blank line and with the first line

indented. It is possible to get left-justified block-style paragraphs by using
.lp instead of .pp, as demonstrated by the next paragraph.

Sometimes you want to use paragraphs that have the body indented, and
the first line exdented (opposite of indented) with a label. This can be done
with the .ip request. A word specified on the same line as .ip is printed in
the margin, and the body is lined up at a prespecified position (normally
five spaces). For example, the input:

.ip one
This is the first paragraph.
Notice how the first line
of the resulting paragraph lines up
with the other lines in the paragraph .
. ip two
And here we are at the second paragraph already.
You may notice that the argument to .ip
appears
in the margin .
.lp
We can continue text ...

produces as output:

one This is the first paragraph. Notice how the first line of the resulting
paragraph lines up with the other lines in the paragraph.

two And here we are at the second paragraph already. You may notice
that the argument to .ip appears in the margin.

We can continue text without starting a new indented paragraph by using
the .lp request.

If you have spaces in the label of a .ip request, you must use an
"unpaddable space" instead of a regular space. This is typed as a
backslash character ("\") followed by a space. For example, to print the
label "Part 1", enter:

.ip "Part\ I"

If a label of an indented paragraph (that is, the argument to .ip) is
longer than the space allocated for the label, .ip will begin a new line after
the label. For example, the input:

.ip longlabel
This paragraph had a long label.
The first character of text on the first line
will not line up with the text on second and subsequent lines,
although they will line up with each other.

will produce:

o

o

o

o

o

Using nrofl' and -me B-13

longlabel
This paragraph had a long label. The first character of text on the
first line will not line up with the text on second and subsequent lines,
although they will line up with each other.

It is possible to change the size of the label by using a second argu­
ment which is the size of the label. For example, the above example could
be done correctly by saying:

.ip longlabel 10

which will make the paragraph indent 10 spaces for this paragraph only. If
you have many paragraphs to indent all the same amount, use the number
register ii. For example, to leave one inch of space for the label, type:

.nr ii Ii

somewhere before the first call to .ip. Refer to the troff reference manual
(in Section 2) for more information.

If .ip is used with no argument at all no hanging tag will be printed.
For example, the input:

.ip [a]
This is the first paragraph of the example.
We have seen this sort of example before .
. ip
This paragraph is lined up with the previous paragraph,
but it has no tag in the margin.

produces as output:

[a] This is the first paragraph of the example. We have seen this sort of
example before.

This paragraph is lined up with the previous paragraph, but it has no
tag in the margin.

A special case of .ip is .np, which automatically numbers paragraphs
sequentially from 1. The numbering is reset at the next .pp, .lp, or .sh (to
be described in the next section) request. For example, the input:

Using nroff and -me

.np
This is the first point .
. np
This is the second point.
Points are just regular paragraphs
which are given sequence numbers automatically
by the .np request .
. pp
This paragraph will reset numbering by .np .
. np
For example,
we have reverted to numbering from one now.

generates:

(1) This is the first point.

B-14

(2) This is the second point. Points are just regular paragraphs which are
given sequence numbers automatically by the .np request.

This paragraph will reset numbering by .np.

(1) For example, we have reverted to numbering from one now.

5.2. Section Headings
Section numbers (such as the ones used in this document) can be

automatically generated using the .sh request. You must tell .sh the depth
of the section number and a section title. The depth specifies how many
numbers are to appear (separated by decimal points) in the section number.
For example, the section number 4.2.5 has a depth of three.

Section numbers are incremented in a fairly intuitive fashion. If you
add a number (increase the depth), the new number starts out at one. If
you subtract section numbers (or keep the same number) the final number
is incremented. For example, the input:

.sh 1 "The Preprocessor"

.sh 2 ;'Basic Concepts"

.sh 2 "Control Inputs"

.sh 3

.sh 3

.sh 1 "Code Generation"

.sh 3

produces as output the result:

o

o

o

·0

o

Using nroff and -me

1. The Preprocessor
1.1. Basic Concepts
1.2. Control Inputs
1.2.1.
1.2.2.
2. Code Generation
2.1.1.

B-15

You can specify the section number to begin by placing the section
number after the section title, using spaces instead of dots. For example,
the request:

.sh 3 "Another section" 7 3 4

will begin the section numbered 7.3.4; all subsequent .sh requests will
number relative to this number.

There are more complex features which will cause each section to be
indented proportionally to the depth of the section. For example, if you
enter:

.nr si N

each section will be indented by an amount N. N must have a scaling fac­
tor attached, that is, it must be of the form Nx, where x is a character tel­
ling what units N is in. Common values for x are i for inches, c for centim­
eters, and n for ens (the width of a single character). For example, to
indent each section one-half inch, type:

.nr si O.5i

Mter this, sections will be indented by one-half inch per level of depth in
the section number. For example, this document was produced using the
request

.nr si 3n

at the beginning of the input file, giving three spaces of indent per section
depth.

Section headers without automatically generated numbers can be done
using:

.uh "Title"

which will do a section heading, but will put no number on the section.

5.3. Parts of the Basic Paper
There are some requests which assist in setting up papers. The .tp

request initializes for a title page. There are no headers or footers on a title
page, and unlike other pages you can space down and leave blank space at
the top. For example, a typical title page might appear as:

Using nroff and -me

.tp

.sp 2i

.(1 C
THE GROWTH OF TOENAILS
IN UPPER PRIMATES
.sp
by
.sp
Frank N. Furter
.)1
.bp

B-16

The request .th sets up the environment of the NROFF processor to do
a thesis, using the rules established at Berkeley. It defines the correct
headers and footers (a page number in the upper right hand corner only),
sets the margins correctly, and double spaces.

The .+c T request can be used to start chapters. Each chapter is
automatically numbered from one, and a heading is printed at the top of
each chapter with the chapter number and the chapter name T. For exam­
ple, to begin a chapter called "Conclusions", use the request:

.+c "CONCLUSIONS"

which will produce, on a new page, the lines

CHAPTER 5
CONCLUSIONS

with appropriate spacing for a thesis. Also, the header is moved to the foot
of the page on the first page of a chapter. Although the .+c request was
not designed to work only with the .th request, it is tuned for the format
acceptable for a PhD thesis at Berkeley.

If the title parameter T is omitted from the .+c request, the result is a
chapter with no heading. This can also be used at the beginning of a r"
paper; for example, .+c was used to generate page one of this document. ~.

Although papers traditionally have the abstract, table of contents, and
so forth at the front of the paper, it is more convenient to format and print
them last when using NROFF. This is so that index entries can be collected
and then printed for the table of contents (or whatever). At the end of the
paper, issue the .++ P request, which begins the preliminary part of the
paper. After issuing this request, the .+c request will begin a preliminary
section of the paper. Most notably, this prints the page number restarted
from one in lower case Roman numbers. .+c may be used repeatedly to
begin different parts of the front material for example, the abstract, the
table of contents, acknowledgments, list of illustrations, etc. The request
.++ B may also be used to begin the bibliographic section at the end of
the paper. For example, the paper might appear as outlined in figure 2.
(In this figure, comments begin with the sequence \".) r'"

.'

o

o

o

o

o

U si~g nroff and -me B-17

.th \" set for thesis mode

.fo ' , DRAFT' , \" define footer for each page

.tp \" begin title page

.(1 C \" center a large block
THE GROWTH OF TOENAILS
IN UPPER PRIMATES
.sp
by
.sp
Frank Furter
.)1 \" end centered part
.+c INTRODUCTION
.(x t

\" begin chapter named "INTRODUCTION"
\" make an entry into index 't'

Introduction
.)x \" end of index entry
text of chapter one
.+c "NEXT CHAPTER" \" begin another chapter
.(x t \" enter into index 't' again
Next Chapter
.)x
text of chapter two
.+c CONCLUSIONS
.(x t
Conel usions
.)x
text of chapter three
.++ B
.+c BIDLIOGRAPHY
.(x t
Bibliography
.)x
text of bibliography

\" begin bibliographic information
\" begin another 'chapter'

.++ P \" begin preliminary material

.+c "TABLE OF CONTENTS"

.xp t

.+c PREFACE
text of preface

\" print index 't' collected above
\" begin another preliminary section

Figure 2. Outline of a Sample Paper

Using nroff and -me B-18

5.4. Equations and Tables
Two special UNIX programs exist to format special types of material.

Eqn and neqn set equations for the phototypesetter and NROFF respec­
tively. Tbl arranges to print extremely pretty tables in a variety of for­
mats. This document will only describe the embellishments to the standard
features; consult the reference manuals for those processors for a description
of their use.

The eqn and neqn programs are described fully in the document
Typesetting Mathematics - Users' Guide by Brian W. Kernighan and
Lorinda L. Cherry. Equations are centered, and are kept on one page.
They are introduced by the .EQ request and terminated by the .EN
request.

The .EQ request may take an equation number as an optional argu­
ment, which is printed vertically centered on the right hand side of the
equation. If the equation becomes too long it should be split between two
lines. To do this, type:

.EQ (eq 34)
text of equation 34
.ENe
.EQ
continuation of equation 34
.EN

The C on the .EN request specifies that the equation will be continued.

The tbl program produces tables. It is fully described (including
numerous examples) in the document Tbl - A Program to Format Tables by
M. E. Lesk. Tables begin with the • TS request and end with the • TE
request. Tables are normally kept on a single page. If you have a table
which is too big to fit on a single page, so that you know it will extend to
several pages, begin the table with the request • TS H and put the request
. TH after the part of the table which you want duplicated at the top of
every page that the table is printed on. For example, a table definition for
a long table might look like:

.TSH
css
n n n.
THE TABLE TITLE
.TH
text of the table
.TE

5.5. Two Column Output
You can get two column output automatically by using the request

.2c. This causes everything after it to be output in two-column form. The C
request .bc will start a new column; it differs from .bp in that .bp may ___ '\

o

o

o

o

o

Using nroff and -me B-19

leave a totally blank column when it starts a new page. To revert to single
column output, use .lc.

5.6. Defining Macros
A macro is a collection of requests and text which may be used by

stating a simple request. Macros begin with the line .de xx (where xx is the
name of the macro to be defined) and end with the line consisting of two
dots. After defining the macro, stating the line .xx is the same as stating
all the other lines. For example, to define a macro that spaces 3 lines and
then centers the next input line, enter:

.de SS

.sp 3

.ce

and use it by typing:

.SS
Title Line
(beginning of text)

Macro names may be one or two characters. In order to avoid conflicts
with names in -me, always use upper case letters as names. The only
names to avoid are TS, TH, TE, EQ, and EN.

5.7. Annotations Inside Keeps
Sometimes you may want to put a footnote or index entry inside a

keep. For example, if you want to maintain a "list of figures" you will
want to do something like:

.(z

.(c
text of figure
.)c
.ce
Figure 5 .
. (x f
Figure 5
.)x
.)z

which you may hope will give you a figure with a label and an entry in the
index f (presumably a list of figures index). Unfortunately, the index entry
is read and interpreted when the keep is read, not when it is printed, so the
page number in the index is likely to be wrong. The solution is to use the
magic string \! at the beginning of all the lines dealing with the index. In
other words, you should use:

Using nroff and -me

.(z

.(c
Text of figure
.)c
.ce
Figure 5.
\!.(x f
\!Figure 5
\!.)x
.)z

B-20

which will defer the processing of the index until the figure is output. This
will guarantee that the page number in the index is correct. The same
comments apply to blocks (with .(b and .)b) as well.

6. TROFF and the Photosetter
With a little care, you can prepare documents that will print nicely on

either a regular terminal or when phototypeset using the TROFF formatting
program.

6.1. Fonts
A font is a style of type. There are three fonts that are available

simultaneously, Times Roman, Times Italic, and Times Bold, plus the spe- C "
cial math font. The normal font is Roman. Text which would be under-
lined in NROFF with the .ul request is set in italics in TROFF.

There are ways of switching between fonts. The requests .r, .i, and .b
switch to Roman, italic, and bold fonts respectively. You can set a single
word in some font by typing (for example):

.i word

which will set word in italics but does not affect the surrounding text. In
NROFF, italic and bold text is underlined.

Notice that if you are setting more than one word in whatever font,
you must surround that word with double quote marks (' " ') so that it will
appear to the NROFF processor as a single word. The quote marks will not
appear in the formatted text. If you do want a quote mark to appear, you
should quote the entire string (even if a single word), and use two quote
marks where you want one to appear. For example, if you want to produce
the text:

"Master Control'

in italics, you must type:

.i ''''''Master Control\I"""

The \1 produces a very narrow space so that the "1" does not overlap the
quote sign in TROFF, like this:

o

o

o

o

Using nroff and -me

"Master Controf'

There are also several "pseudo-fonts" available. The input:

.(b

.u underlined

.bi "bold italics"

. bx "words in a box"

.)b

generates

underlined
bold italics
I words in a box I

B-21

In NROFF these all just underline the text. Notice that pseudo font
requests set only the single parameter in the pseudo font; ordinary font
requests will begin setting all text in the special font if you do not provide a
parameter. No more than one word should appear with these three font
requests in the middle of lines. This is because of the way TROFF justifies
text. For example, if you were to issue the requests:

.bi "some bold italics"
and
. bx "words in a box"

in the middle of a line TROFF would produce 9J(IJI'Ill(f, WtIl ~ and I words
in a box I,
which I think you will agree does not look good.

The second parameter of all font requests is set in the original font.
For example, the font request:

.b bold face

generates "bold" in bold font, but sets "face" in the font of the surround­
ing text, resulting in:

boldface.

To set the two words bold and face both in bold face, type:

.b "bold face"

You can mix fonts in a word by using the special sequence \ c at the
end of a line to indicate "continue text processing"; this allows input lines
to be joined together without a space inbetween them. For example, the
input:

.u under \c

.i italics

generates underitalics, but if we had typed:

Using nroff and -me

.u under

.i italics

the result would have been under italics as two words.

6.2. Point Sizes

B-22

The phototypesetter supports different sizes of type, measured in
points. The default point size is 10 points for most text, 8 points for foot­
notes. To change the pointsize, type:

.sz +N

where N is the size wanted in points. The vertical spacing (distance
between the bottom of most letters (the baseline) between adjacent lines) is
set to be proportional to the type size.

Warning: changing point sizes on the phototypesetter is a slow
mechanical operation. Size changes should be considered carefully.

6.3. Quotes
It is conventional when using the typesetter to use pairs of grave and

acute accents to generate double quotes, rather than the double quote char­
acter (' "'). This is because it looks better to use grave and acute accents;
for example, compare" quote" to "quote".

In order to make quotes compatible between the typesetter and termi­
nals, you may use the sequences \ * (lq and \ * (rq to stand for the left and
right quote respectively. These both appear as » on most terminals, but are
typeset as " and" respectively. For example, use:

\ *(1qSome things aren't true
even if they did happen.*(rq

to generate the result:

"Some things aren't true even if they did happen."

As a shorthand, the special font request:

.q "quoted text"

will generate "quoted text". Notice that you must surround the material to
be quoted with double quote marks if it is more than one word.

6.4. Special Characters
There are a number of special characters available.

sequences used to generate these characters are listed below.
Name Usage Example
Acute accent *' a*'
Grave accent *' e*'

..
e

UmIat *: u*:
..
u

Tilde *- n*-
IV

n
Caret *" e*"

,..
e

The escape

o

o

o

o

o

Using nroff and -me

Cedilla
Czech
Circle

c*,
e*v
A*o

c
~
A

B-23

c:'

C'

o

o

o

o

o

Appendix C: A Dictionary of vi Characters

This appendix explains the uses vi makes of every keyboard character.
Characters are presented in their order in the ASCII character set: control
characters come first, followed by the "special" characters, digits, upper­
case, and lower-case characters.

For each character, this section explains the meaning it has when used as
a command, as well as any meaning it has during an insert.

j @ Not a command character. If typed as the first character
of an insertion it is replaced with the last text inserted, and
the insert terminates. Only 128 characters are saved from
the last insert; if more characters were inserted the mechan­
ism is not available. A j@ cannot be part of the file due to
the editor implementation.

j A Unused.

jB

jC

jD

jE

jF

jG

jH (BS)

j I (TAB)

j J (LF)

vi dictionary

Backward window. A count specifies repetition. Two lines
of continuity are kept if possible.

Unused.

As a command, scrolls down a half-window of text. A
count gives the number of (logical) lines to scroll, and is
remembered for future jD and jV commands. During an
insert, backtabs over autoindent white space at the begin­
ning of a line. This white space cannot be backspaced
over.

Exposes one more line below the current screen in the file,
leaving the cursor where it is if possible.

Forward window. A count specifies repetition. Two lines
of continuity are kept if possible.

Equivalent to :fRETURN, printing the current file, whether
it has been modified, the current line number and the
number of lines in the file, and the percentage of the way
through the file that you are.

Same as left arrow. (See h). During an insert, eliminates
the last input character, backing over it but not erasing it;
it remains so you can see what you typed if you wish to
type something only slightly different.

Not a command character. When inserted it prints as some
number of spaces. When the cursor is at a tab character it
rests at the last of the spaces which represent the tab. The
spacing of tabstops is controlled by the tabstop option.

Same as down arrow (see j).

C-l

C-2

tK
tL

vi dictionary

Unused.

The ASCII formfeed character, this causes the screen to be
cleared and redrawn. This is useful after a transmission
error, if characters typed by a program other than the edi­
tor scramble the screen, or after output is stopped by an
interrupt.

tM (RETURN)

tN
to
tP
tQ

tR

ts

tT

tu

A carriage return advances to the next line, at the first
non-white position in the line. Given a count, it advances
that many lines. During an insert, a RETURN causes the
insert to continue onto another line.

Same as down arrow (see j).

Unused.

Same as up arrow (see k).

Not a command character. In input mode, tQ quotes the
next character, the same as tV, except that some teletype
drivers will eat the tQ so that the editor never sees it.

Redraws the current screen, eliminating logical lines not
corresponding to physical lines (lines with only a single @

character on them). On hardcopy terminals in open mode,
retypes the current line.

Unused. Some teletype drivers use ts to suspend output
until tQ is pressed.

Not a command character. During an insert, with autoin­
dent set and at the beginning of the line, inserts shi/twidth
white space.

Scrolls the screen up, inverting tD which scrolls down.
Counts work as they do for tD, and the previous scroll
amount is common to both. On a dumb terminal, tU will
often necessitate clearing and redrawing the screen further
back in the file.

tv Not a command character. In input mode, quotes the next
character so that it is possible to insert non-printing and
special characters into the file.

t W Not a command character. During an insert, backs up as b
would in command mode; the deleted characters remain on
the display (see tH).

tx Unused.

ty Exposes one more line above the current screen, leaving the
cursor where it is if possible. (No mnemonic value for this
key; however, it is next to tu which scrolls up a bunch.)

o

o

o

o

o

vi dictionary

iZ

i [(ESC)

i\
i]

ii

SPACE

"

C-3

If mapped to End-of-File (EOF), stops the editor, exiting to
the top level shell. Same as :stopRETURN. Otherwise,
unused.

Cancels a partially formed command, such as a z when no
following character has yet been given; terminates inputs
on the last line (read by commands such as : / and f); ends
insertions of new text into the buffer. If an ESC is given
when quiescent in command state, the editor rings the bell
or flashes the screen. You can thus hit ESC if you don't
know what is happening till the editor rings the bell. If
you don't know if you are in insert mode you can type
ESCa, and then material to be input; the material will be
inserted correctly whether or not you were in insert mode
w hen you started.

Unused.

Searches for the word which is after the cursor as a tag.
Equivalent to typing :ta, this word, and then a RETURN.
Mnemonically, this command is "go right to".

Equivalent to :e #RETURN, returning to the previous posi­
tion in the last edited file, or editing a file which you
specified if you got a 'No write since last change diagnostic'
and do not want to have to type the file name again. (You
have to do a :w before ii will work in this case. If you do
not wish to write the file you should do :e! #RETURN
instead.)

Unused. Reserved as the command character for the Tek­
tronix 4025 and 4027 terminal.

Same as right arrow (see I).

An operator, which processes lines from the buffer with
reformatting commands. Follow! with the object to be
processed, and then the command name terminated by
RETURN. Doubling! and preceding it by a count causes
count lines to be filtered; otherwise the count is passed on
to the object after the!. Thus 2!}fmtRETURN reformats
the next two paragraphs by running them through the pro­
gram fmt. If you are working on LISP, the command
! % grindRETURN given at the beginning of a function, will
run the text of the function through the LISP grinder if it is
present. To read a file or the output of a command into
the buffer use :r. To simply execute a command use :!.

Precedes a named buffer specification. There are named
buffers 1-9 used for saving deleted text and named buffers
a-z into which you can place text.

The macro character which, when followed by a number,
will substitute for a function key on terminals without

C-4

$

%

&

(

)

*
+

vi dictionary

function keys. In input mode, if this is your erase charac­
ter, it will delete the last character you typed in input
mode, and must be preceded with a \ to insert it, since it
normally backs over the last input character you gave.

Moves to the end of the current line. If you :se listRE­
TURN, then the end of each line will be shown by printing a
$ after the end of the displayed text in the line. Given a
count, advances to the count'th line following the next
end-of-line; thus 2$ advances to the end of the following
line.

Moves to the parenthesis or brace { } which balances the
parenthesis or brace at the current cursor position.

A synonym for :&RETURN, by analogy with the ex & com­
mand.

When followed by a ' returns to the previous context at
the beginning of a line. The previous context is set when­
ever the current line is moved in a non-relative way. When
followed by a letter a-z, returns to the line which was
marked with this letter with a m command, at the first
non-white character in the line. When used with an opera­
tor such as d, the operation takes place over complete 1ines;
if you use ' , the operation takes place from the exact
marked place to the current cursor position within the line.

Retreats to the beginning of a sentence, or to the beginning
of a LISP s-expression if the lisp option is set. A sentence
ends at a • ! or ? which is followed by either the end of a
line or by two spaces. Any number of closing)] "and '
characters may appear after the. ! or ?, and before the
spaces or end of line. Sentences also begin at paragraph
and section boundaries (see { and [[below). A count
advances that many sentences (4.2, 6.8).

Advances to the beginning of a sentence. A count repeats
the effect. See (above for the definition of a sentence (4.2,
6.8).

Unused.

Same as RETURN when used as a command.

Reverse of the last f F t or T command, looking the other
way in the current line. Especially useful after hitting too
many; characters. A count repeats the search.

Retreats to the previous line at the first non-white charac­
ter. This is the inverse of + and RETURN. If the line
moved to is not on the screen, the screen is scrolled, or
cleared and redrawn if this is not possible. If a large
amount of scrolling would be required the screen is also

C~

vi dictionary

o

/

o

o

o
a

1-9

< o

C-5

cleared and redrawn, with the current line at the center.

Repeats the last command which changed the buffer. Espe­
cially useful when deleting words or lines; you can delete
some words/lines and then hit. to delete more and more
words/lines. Given a count, it passes it on to the command
being repeated. Thus after a 2dw, 3. deletes three words.

Reads a string from the last line on the screen, and scans
forward for the next occurrence of this string. The normal
input editing sequences may be used during the input on
the bottom line; an returns to command state without ever
searching. The search begins when you hit RETURN to ter­
minate the pattern; the cursor moves to the beginning of
the last line to indicate that the search is in progress; the
search may then be terminated with a DEL or RUB, or by
backspacing when at the beginning of the bottom line,
returning the cursor to its initial position. Searches nor­
mally wrap end-around to find a string anywhere in the
buffer.

When used with an operator the enclosed region is normally
affected. By mentioning an offset from the line matched by
the pattern you can force whole lines to be affected. To do
this give a pattern with a closing / and then an offset +n
or -no

To include the character / in the search string, you must
escape it with a preceding \. A t at the beginning of the
pattern forces the match to occur at the beginning of a line
only; this speeds the search. A $ at the end of the pattern
forces the match to occur at the end of a line only. More
extended pattern matching is available. Unless you set
nomagic in your. exrc file you will have to preceed the
characters. [* and - in the search pattern with a \ to get
them to work as you would otherwise expect.

Moves to the first character on the current line. Also used,
in forming numbers, after an initial 1-9.

Used to form numeric arguments to commands.

A prefix to a set of commands for file and option mani pula­
tion and escapes to the system. Input is given on the bot­
tom line and terminated with an RETURN, and the com­
mand then executed. You can ret urn to where you were by
hitting DEL or RUB if you hit: accidentally.

Repeats the last single character find which used f F t or
T. A count iterates the basic scan.

An operator which shifts lines left one shiftwidth, normally
8 spaces. Like all operators, affects lines when repeated, as
in < <. Counts are passed through to the basic object,

C-6 vi dictionary

thus 3 < < shifts three lines. ("
" ,-_.,

- Reindents line for LISP, as though they were typed in with
lisp and autoindent set.

> An operator which shifts lines right one shiftwidth, normally
8 spaces. Affects lines when repeated as in > > . Counts
repeat the basic object.

? Scans backwards, the opposite of /. See the / description
above for details on scanning.

@ A macro character. If this is your kill character, you must
escape it with a \ to type it in during input mode, as it
normally backs over the input you have given on the
current line.

A Appends at the end of line, a synonym for $a. r-"
B Backs up a word, where words are composed of non-blank "---

sequences, placing the cursor at the beginning of the word.
A count repeats the effect.

C Changes the rest of the text on the current line; a synonym
for c$.

D Deletes the rest of the text on the current line; a synonym
for d$. ("

E Moves forward to the end of a word, defined as blanks and ~ ~-

non-blanks, like Band W. A count repeats the effect.

F Finds a single following character, backwards in the current
line. A count repeats this search count times

G Goes to the line number given as preceding argument, or
the end of the file if no preceding count is given. The
screen is redrawn with the new current line in the center if (" necessary.

\--._.

H Home arrow. Homes the cursor to the top line on the
screen. If a count is given, then the cursor is moved to the
count'th line on the screen. In any case the cursor is
moved to the first non-white character on the line. If used
as the target of an operator, full lines are affected.

I Inserts at the beginning of a line; a synonym for ti.
J Joins together lines, supplying appropriate white space: one

space between words, two spaces after a ., and no spaces at
all if the first character of the joined on line is). A count
causes that many lines to be joined rather than the default
two.

K Unused. Co,

-------------------------------------- -----.-.-- .. ---.~.----.--

o

o

o

o

o

vi dictionary

L

M

N

o

P

Q

R

S

T

U

v
w

x

C-7

Moves the cursor to the first non-white character of the last
line on the screen. With a count, to the first non-white of
the count'th line from the bottom. Operators affect whole
lines when used with L.

Moves the cursor to the middle line on the screen, at the
first non-white position on the line.

Scans for the next match of the last pattern given to / or ?,
but in the reverse direction; this is the reverse of n.

Opens a new line above the current line and inputs text
there up to' an ESC. A count can be used on dumb termi­
nals to specify a number of lines to be opened; this is gen­
erally obsolete, as the slowopen option works better.

Puts the last deleted text back before/above the cursor.
The text goes back as whole lines above the cursor if it was
deleted as whole lines. Otherwise the text is inserted
between the characters -before and at the cursor. May be
preceded by a named buffer specification" x to retrieve the
contents of the buffer; buffers 1-9 contain deleted material,
buffers a-z are available for general use.

Quits from vi to ex command mode. In this mode, whole
lines form commands, ending with a RETURN. You can
give all the: commands; the editor supplies the : as a
prompt.

Replaces characters on the screen with characters you type
(overlay fashion). Terminates with an ESC.

Changes whole lines, a synonym for cc. A count substi­
tutes for that many lines. The lines are saved in the
numeric buffers, and erased on the screen before the substi­
tution begins.

Takes a single following character, locates the character
before the cursor in the current line, and places the cursor
just after that character. A count repeats the effect. Most
useful with operators such as d.

Restores the current line. Undoes any changes you have
made.

Unused.

Moves forward to the beginning of a word in the current
line, where words are defined as sequences of blank/non­
blank characters. A count repeats the effect.

Deletes the character before the cursor. A count repeats
the effect, but only characters on the current line are
deleted.

C-8

Y

zz

[[

\
]]

i

a

b

c

vi dictionary

Yanks a copy of the current line into the unnamed buffer,
to be put back by a later p or P; a very useful synonym for
yy. A count yanks that many lines. May be preceded by a
buffer name to put lines in that buffer.

Exits the editor. (Same as :xRETURN.) If any changes have
been made, the buffer is written out to the current file.
Then the editor quits.

Backs up to the previous section boundary. A section
begins at each macro in the sections option, normally a
'.NII' or '.SH' and also at lines which start with a formfeed
jL. Lines beginning with { also stop [[; this makes it useful
for looking backwards, a function at a time, in C programs.
If the option lisp is set, stops at each (at the beginning of
a line, and is thus useful for moving backwards at the top
level LISP objects.

Unused.

Forward to a section boundary, see [[for a definition.

Moves to the first non-white position on the current line.

Unused.

When followed by a ' returns to the previous context. The
previous context is set whenever the current line is moved
in a non-relative way. When followed by a letter a-z,
returns to the position which was marked with this letter
with a m command. When used with an operator such as
d, the operation takes place from the exact marked place to
the current position within the line; if you use " the opera­
tion takes place over complete lines.

Appends arbitrary text after the current cursor position;
the insert can continue onto multiple lines by using
RETURN within the insert. A count causes the inserted text
to be replicated, but only if the inserted text is all on one
line. The insertion terminates with an ESC.

Backs up to the beginning of a word in the current line. A
word is a sequence of alphanumerics, or a sequence of spe­
cial characters. A count repeats the effect.

An operator which changes the following object, replacing
it with the following input text up to an ESC. If more than
part of a single line is affected, the text which is changed
away is saved in the numeric named buffers. If only part of
the current line is affected, then the last character to be
changed away is marked with a $. A count causes that
many objects to be affected, thus both 3c) and c3) change
the following three sentences.

-----------------------------------_ .. _----_._.- ... _ .. -_._-_._---- ..•... _-

o

o

o

o

o

vi dictionary

d

e

f

g

h

j

k

m

n

o

p

q

r

s

An operator which deletes the following object. If more
than part of a line is affected, the text is saved in the
numeric buffers. A count causes that many objects to be
affected; thus 3dw is the same as d3w.

C-9

Advances to the end of the next word, defined as for band
w. A count repeats the effect.

Finds the first instance of the next character following the
cursor on the current line. A count repeats the find.

Unused.

Left arrow. Moves the cursor one character to the left.
Like the other arrow keys, either h, the left arrow key, or
one of the synonyms (iH) has the same effect. On v2 edi­
tors, arrow keys on certain kinds of terminals (those which
send escape sequences, such as vt52, clOD, or hp) cannot be
used. A count repeats the effect.

Inserts text before the cursor, otherwise like a.

Down arrow. Moves the cursor one line down in the same
column. If the position does not exist, vi comes as close as
possible to the same column. Synonyms include i J
(linefeed) and iN.
Up arrow. Moves the cursor one line up. iP is a synonym.

Right arrow. Moves the cursor one character to the right.
SPACE is a synonym.

Marks the current position of the cursor in the mark regis­
ter which is specified by the next character a-z. Return to
this position or use with an operator using' or '.

Repeats the last / or ? scanning commands.

Opens new lines below the current line; otherwise like o.
Puts text after/below the cursor; otherwise like P.

Unused.

Replaces the single character at the cursor with a single
character you type. The new character may be a RETURN;
this is the easiest way to split lines. A count replaces each
of the following count characters with the single character
given; see R above which is the more usually useful itera­
tion of r.

Changes the single character under the cursor to the text
which follows up to an ESC; given a count, that many char­
acters from the current line are changed. The last charac­
ter to be changed is marked with $ as in c.

C-l0 vi dictionary

t Advances the cursor up to the character before the next C_~ character typed. Most useful with operators such as d and
c to delete the characters up to a following character. You
can use. to delete more if this doesn't delete enough the
first time.

u Undoes the last change made to the current buffer. If
repeated, will alternate between these two states, thus is its
own inverse. When used after an insert which inserted text
on more than one line, the lines are saved in the numeric
named buffers.

v Unused.

w Advances to the beginning of the next word, as defined by
h.

x Deletes the single character under the cursor. \i\Tith a count ("
deletes that many characters forward from the cursor posi- '-_.

tion, but only on the current line.

y An operator, yanks the following object into the unnamed
temporary buffer. If preceded by a named buffer
specification, "x, the text is placed in that buffer also. Text
can be recovered by a later p or P.

z Redraws the screen with the current line placed as specified C--by the following character: RETURN specifies the top of the
screen, • the center of the screen, and - at the bottom of
the screen. A count may be given after the z and before
the following character to specify the new screen size for
the redraw. A count before the z gives the number of the
line to place in the center of the screen instead of the
default current line.

{ Retreats to the the beginning of the preceding paragraph. ~,

A paragraph begins at each macro in the paragraphs option, (
normally '.IP', '.LP', '.PP', '.QP' and '.bp'. A paragraph '---.

also begins after a completely empty line, and at each sec-
tion boundary (see [[above).

Places the cursor on the character in the column specified
by the count.

} Advances to the beginning of the next paragraph. See { for
the definition of paragraph.

Unused.

t? (DEL) Interrupts the editor, returning it to command accepting
state.

C.~

-------_. - -_._ •... _ ...

--------------------------------------- ------------------

o

o

o

o

o

Appendix D: Writing Tools - The STYLE and DICTION
Programs

1. Introduction

L. L. Cherry

Bell Laboratories
Murray Hill, New Jersey 07974

W. Vesterman

Livingston College
Rutgers University

Computers have become important in the document preparation process,
with programs to check for spelling errors and to format documents. As the
amount of text stored on line increases, it becomes feasible and attractive to
study writing style and to attempt to help the writer in producing readable docu­
ments. The system of writing tools described here is a first step toward such
help. The system includes programs and a data base to analyze writing style at
the word and sentence level. We use the term "style" in this paper to describe
the results of a writer's particular choices among individual words and sentence
forms. Although many judgements of style are subjective, particularly those of
word choice, there are some objective measures that experts agree lead to good
style. Three programs have been written to measure some of the objectively
definable characteristics of writing style and to identify some commonly In isused
or unnecessary phrases. Although a document that conforms to the stylistic rules
is not guaranteed to be coherent and readable, one that violates all of the rules is
likely to be difficult or tedious to read. The program STYLE calculates readabil­
ity, sentence length variability, sentence type, word usage and sentence openers
at a rate of about 400 words per second on a PDPll/70 running the UNIXt
Operating System. It assumes that the sentences are well-formed, i. e. that each
sentence has a verb and that the subject and verb agree in number. DICTION
identifies phrases that are either bad usage or unnecessarily wordy. EXPLAIN
acts as a thesaurus for the phrases found by DICTION. Sections 2, 3, and 4
describe the programs; Section 5 gives the results on a cross-section of technical
documents; Section 6 discusses accuracy and problems; Section 7 gives implemen­
tation details.

D-2 STYLE and DICTION

2. STYLE
The program STYLE reads a document and prints a summary of readability

indices, sentence length and type, word usage, and sentence openers. It may also
be used to locate all sentences in a document longer than a given length, of rea­
dability index higher than a given number, those containing a passive verb, or
those beginning with an expletive. STYLE is based on the system for finding
English word classes or parts of speech, PARTS [1]. PARTS is a set of programs
that uses a small dictionary (about 350 words) and suffix rules to partially assign
word classes to English text. It then uses experimentally derived rules of word
order to assign word classes to all words in the text with an accuracy of about
95%. Because PARTS uses only a small dictionary and general rules, it works on
text about any subject, from physics to psychology. Style measures have been
built into the output phase of the programs that make up PARTS. Some of the
measures are simple counters of the word classes found by PARTS; many are
more complicated. For example, the verb count is the total number of verb
phrases. This includes phrases like:

has been going
was only going
to go

each of which each counts as one verb. Figure 1 shows the output of STYLE run
on a paper by Kernighan and Mashey about the UNIX programming environment
[2]. As the example shows, STYLE output is in five parts. After a brief discus­
sion of sentences, we will describe the parts in order.

2.1. What is a sentence?
Readers of documents have little trouble deciding where the sentences end.

People don't even have to stop and think about uses of the character"." in con­
structions like 1.25, A. J. Jones, Ph.D., i. e., or etc.. When a computer reads a
document, finding the end of sentences is not as easy. First we must throwaway
the printer's marks and formatting commands that litter the text in computer
form. Then STYLE defines a sentence as a string of words ending in one of:

r·
(,
'--

o

o

o

o

o

STYLE and DICTION

programming environment
readability grades:

sentence info:

sentence types:

word usage:

sentence beginnings:

. ! ? I·

D-3

(Kincaid) 12.3 (auto) 12.8 (Coleman-Liau) 11.8 (Flesch) 13.5 (46.3)

no. sent 335 no. wds 7419
av sent leng 22.1 av word leng 4.91
no. questions 0 no. imperatives 0
no. nonfunc wds 4362 58.8% av leng 6.38
short sent «17) 35% (118) long sent (>32) 16% (55)
longest sent 82 wds at sent 174; shortest sent 1 wds at sent 117

simple 34% (114) complex 32% (108)
compound 12% (41) compound-complex 21% (72)

verb types as % of total verbs
tobe 45% (373) aux 16% (133) inf 14% (114)
passives as % of non-inf verbs 20% (144)
types as % of total
prep 10.8% (804) conj 3.5% (262) adv 4.8% (354)
noun 26.7% (1983) adj 18.7% (1388) pron 5.3% (393)
nominalizations 2 % (155)

subject opener: noun (63) pron (43) pos (0) adj (58) art (62) tot 67%
prep 12% (39) adv 9% (31)
verb 0% (1) sub_conj 6% (20) conj 1% (5)
expletives 4% (13)

Figure 1

The end marker "I." may be used to indicate an imperative sentence. Impera­
tive sentences that are not so marked are not identified as imperative. STYLE
properly handles numbers with embedded decimal points and commas, strings of
letters and numbers with embedded decimal points used for naming computer file
names, and the common abbreviations listed in Addendum 1. Numbers that end
sentences, like the preceding sentence, cause a sentence break if the next word
begins with a capital letter. Initials only cause a sentence break if the next word
begins with a capital and is found in the dictionary of function words used by
PARTS. So the string

J. D. JONES

does not cause a break, but the string

... system H. The ...

does. With these rules most sentences are broken at the proper place, although
occasionally either two sentences are called one or a fragment is called a sentence.
More on this later.

D-4 STYLE and DICTION

2.2. Readability Grades
The first section of STYLE output consists of four readability indices. As

Klare points out in [3] readability indices may be used to estimate the reading
skills needed by the reader to understand a document. The readability indices
reported by STYLE are based on measures of sentence and word lengths.
Although the indices may not measure whether the document is coherent and
well organized, experience has shown that high indices seem to be indicators of
stylistic difficulty. Documents with short sentences and short words have low
scores; those with long sentences and many polysyllabic words have high scores.
The 4 formulae reported are Kincaid Formula [4], Automated Readability Index
[5], Coleman-Liau Formula [6] and a normalized version of Flesch Reading Ease
Score [7]. The formulae differ because they were experimentally derived using
different texts and subject groups. We will discuss each of the formulae briefly;
for a more detailed discussion the reader should see [3].

The Kincaid Formula, given by:

R eading_ Grade=11.8 *syCper _ wd+ .39 *wds-IJer _S ent-15.59

was based on Navy training manuals that ranged in difficulty from 5.5 to 16.3 in
reading grade level. The score reported by this formula tends to be in the mid­
range of the 4 scores. Because it is based on adult training manuals rather than
school book text, this formula is probably the best one to apply to technical
documents.

The Automated Readability Index (ARI) , based on text from grades a to 7,
was derived to be easy to automate. The formula is:

Reading_Grade=4.71 *let-IJer_wd+.5 *wds_per_sent-21.43

ARI tends to produce scores that are higher than Kincaid and Coleman-Liau but
are usually slightly lower than Flesch.

The Coleman-Liau Formula, based on text ranging in difficulty from .4 to
16.3, is:

Reading_Grade=5.89 *IeCper_wd-.3 *senCper _lOO_wds-15.8

Of the four formulae this one usually gives the lowest grade when applied to
technical documents.

The last formula, the Flesch Reading Ease Score, is based on grade school
text covering grades 3 to 12. The formula, given by:

Reading_Score=206.835-84.6 *syCper_wd-l.015 *wds-IJer_sent

is usually reported in the range a (very difficult) to 100 (very easy). The score
reported by STYLE is scaled to be comparable to the other formulas, except that
the maxim urn grade level reported is set to 17. The Flesch score is usually the
highest of the 4 scores on technical documents.

Coke [8] found that the Kincaid Formula is probably the best predictor for
technical documents; both ARI and Flesch tend to overestimate the difficulty;
Coleman-Liau tend to underestimate. On text in the range of grades 7 to 9 the
four formulas tend to be about the same. On easy text the Coleman-Liau for-
mula is probably preferred since it is reasonably accurate at the lower grades and ("
it is safer to present text that is a little too easy than a little too hard.

o

o

o

o

o

STYLE and DICTION D-5

If a document has particularly difficult technical content, especially if it
includes a lot of mathematics, it is probably best to make the text very easy to
read, i.e. a lower readability index by shortening the sentences and words. This
will allow the reader to concentrate on the technical content and not the long
sentences. The user should remember that these indices are estimators; they
should not be taken as absolute numbers. STYLE called with "-r number" will
print all sentences with an Automated Readability Index equal to or greater than
"number" .

2.3. Sentence length and structure

The next two sections of STYLE output deal with sentence length and struc­
ture. Almost all books on writing style or effective writing emphasize the impor­
tance of variety in sentence length and structure for good writing. Ewing's first
rule in discussing style in the book Writing for Results [9] is:

"Vary the sentence structure and length of your sentences."

Leggett, Mead and Charvat break this rule into 3 in Prentice-Hall Handbook for
Writers [10] as follows:

"34a. Avoid the overuse of short simple sentences."
"34b. Avoid the overuse of long compound sentences."
"34c. Use various sentence structures to avoid monotony and increase effectiveness."

Although experts agree that these rules are important, not all writers follow
them. Sample technical documents have been found with almost no sentence
length or type variability. One document had gO% of its sentences about the
same length as the average; another was made up almost entirely of simple sen­
tences (80%).

The output sections labeled "sentence info" and "sentence types" give both
length and structure measures. STYLE reports on the number and average
length of both sentences and words, and number of questions and imperative sen­
tences (those ending in "j."). The measures of non-function words are an
attempt to look at the content words in the document. In English non-function
words are nouns, adjectives, adverbs, and non-auxiliary verbs; function words are
prepositions, conjunctions, articles, and auxiliary verbs. Since most function
words are short, they tend to lower the average word length. The average length
of non-function words may be a more useful measure for comparing word choice
of different writers than the total average word length. The percentages of short
and long sentences measure sentence length variability. Short sentences are those
at least 5 words less than the average; long sentences are those at least 10 words
longer than the average. Last in the sentence information section is the length
and location of the longest and shortest sentences. If the flag "-1 number" is
used, STYLE will print all sentences longer than "number".

Because of the difficulties in dealing with the many uses of commas and con­
junctions in English, sentence type definitions vary slightly from those of stan­
dard textbooks, but still measure the same constructional activity.'
1. A simple sentence has one verb and no dependent clause.

D-6 STYLE and DICTION

2. A complex sentence has one independent clause and one dependent clause,
each with one verb. Complex sentences are found by identifying sentences
that contain either a subordinate conjunction or a clause beginning with
words like "that" or "who". The preceding sentence has such a clause.

3. A compound sentence has more than one verb and no dependent clause.
Sentences joined by";" are also counted as compound.

4. A compound-complex sentence has either several dependent clauses or one
dependent clause and a compound verb in either the dependent or indepen­
dent clause.
Even using these broader definitions, simple sentences dominate many of the

technical documents that have been tested, but the example in Figure 1 shows
variety in both sentence structure and sentence length.

2.4. Word Usage
The word usage measures are an attempt to identify some other construc­

tional features of writing style. There are many different ways in English to say
the same thing. The constructions differ from one another in the form of the
words used. The following sentences all convey approximately the same meaning
but differ in word usage:

The cxio program is used to perform all communication between the systems.
The cxio program performs all communications between the systems.
The cxio program is used to communicate between the systems.
The cxio program communicates between the systems.
All communication between the systems is performed by the cxio program.

The distribution of the parts of speech and verb constructions helps identify
overuse of particular constructions. Although the measures used by STYLE are
crude, they do point out problem areas. For each category, STYLE reports a
percentage and a raw count. In addition to looking at the percentage, the user
may find it useful to compare the raw count with the number of sentences. If,
for example, the number of infinitives is almost equal to the number of sentences,
then many of the sentences in the document are constructed like the first and
third in the preceding example. The user may want to transform some of these
sentences into another form. Some of the implications of the word usage meas­
ures are discussed below.
Verbs are measured in several different ways to try to determine what types of

verb constructions are most frequent in the document. Technical writing
tends to contain many passive verb constructions and other usage of the
verb "to be". The category of verbs labeled "to be" measures both passives
and sentences of the form:

subject tobe predicate

c·

",-"

In counting verbs, whole verb phrases are counted as one verb. Verb phrases
containing auxiliary verbs are counted in the category "aux". The verb
phrases counted here are those whose tense is not simple present or simple
past. It might eventually be useful to do more detailed measures of verb
tense or mood. Infinitives are listed as "inf". The percentages reported for ('"
these three categories are based on the total number of verb phrases found. -
These categories are not mutually exclusive; they cannot be added, since, for

---------------------",.,.,----,----------

o

o

o

o

o

STYLE and DICTION D-7

example, "to be going" counts as both "tobe" and "inf". Use of these three
types of verb constructions varies significantly among authors.

STYLE reports passive verbs as a percentage of the finite verbs in the docu­
ment. Most style books warn against the overuse of passive verbs. Coleman
[11] has shown that sentences with active verbs are easier to learn than those
with passive verbs. Although the inverted object-subject order of the pas­
sive voice seems to emphasize the object, Coleman's experiments showed
that there is little difference in retention by word position. He also showed
that the direct object of an active verb is retained better than the subject of
a passive verb. These experiments support the advice of the style books sug­
gesting that writers should try to use active verbs wherever possible. The
flag "-p" causes STYLE to print all sentences containing passive verbs.

Pronouns add cohesiveness and connectivity to a document by providing back­
reference. They are often a short-hand notation for something previously
mentioned, and therefore connect the sentence containing the pronoun with
the word to which the pronoun refers. Although there are other mechanisms
for such connections, documents with no pronouns tend to be wordy and to
have little connectivity.

Adverbs can provide transition between sentences and order in time and space.
In performing these functions, adverbs, like pronouns, provide connectivity
and cohesiveness.

Coniunctions provide parallelism in a document by connecting two or more equal
units. These units may be whole sentences, verb phrases, nouns, adjectives,
or prepositional phrases. The compound and compound-complex sentences
reported under sentence type are parallel structures. Other uses of parallel
structures are indicated by the degree that the number of conjunctions
reported under word usage exceeds the compound sentence measures.

Nouns and Adiectives. A ratio of nouns to adjectives near unity may indicate the
over-use of modifiers. Some technical writers qualify every noun with one or
more adjectives. Qualifiers in phrases like "simple linear single-link network
model" often lend more obscurity than precision to a text.

Nominalizations are verbs that are changed to nouns by adding one of the
suffixes "ment", "ance", "ence", or "ion". Examples are accomplishment,
admittance, adherence, and abbreviation. When a writer transforms a nomi­
nalized sentence to a non-nominalized sentence, she/he increases the
effectiveness of the sentence in several ways. The noun becomes an active
verb and frequently one complicated clause becomes two shorter clauses.
For example,

Their inclusion of this provision is admission of the importance of the system.
When they included this provision, they admitted the importance of the system.

Coleman found that the transformed sentences were easier to learn, even
when the transformation produced sentences that were slightly longer, pro­
vided the transformation broke one clause into two. Writers who find their
document contains many nominalizations may want to transform some of
the sentences to use active verbs.

D-8 STYLE and DICTION

2.5. Sentence openers
Another agreed upon principle of style is variety in sentence openers.

Because STYLE determines the type of sentence opener by looking at the part of
speech of the first word in the sentence, the sentences counted under the heading
"subject opener" may not all really begin with the subject. However, a large per­
centage of sentences in this category still indicates lack of variety in sentence
openers. Other sentence opener measures help the user determine if there are
transitions between sentences and where the subordination occurs. Adverbs and
conjunctions at the beginning of sentences are mechanisms for transition between
sentences. A pronoun at the beginning shows a link to something previously
mentioned and indicates connectivity.

The location of subordination can be determined by comparing the number
of sentences that begin with a subordinator with the number of sentences with
complex clauses. If few sentences start with subordinate conjunctions then the
subordination is embedded or at the end of the complex sentences. For variety
the writer may want to transform some sentences to have leading subordination.

The last category of openers, expletives, is commonly overworked in techni­
cal writing. Expletives are the words "it" and "there", usually with the verb "to
be", in constructions where the subject follows the verb. For example,

There are three streets used by the traffic.
There are too many users on this system.

This construction tends to emphasize the object rather than the subject of the
sentence. The flag "_e" will cause STYLE to print all sentences that begin with
an expletive.

3. DICTION
The program DICTION prints all sentences in a document containing

phrases that are either frequently misused or indicate wordiness. The program,
an extension of Aho's FGREP [12] string matching program, takes as input a file
of phrases or patterns to be matched and a file of text to be searched. A data

I~-

I
\

'-._-

base of about 450 phrases has been compiled 'as a default pattern file for DIC- (--
TION. Before attempting to locate phrases, the program maps upper case letters __ _
to lower case and substitutes blanks for punctuation. Sentence boundaries were
deemed less critical in DICTION than in STYLE, so abbreviations and other uses
of the character "." are not treated specially. DICTION brackets all pattern
matches in a sentence with the characters "[" "]" . Although many of the
phrases in the default data base are correct in some contexts, in others they indi-
cate wordiness. Some examples of the phrases and suggested alternatives are:

Phrase
a large number of
arrive at a decision
collect together
for this reason
pertaining to
through the use of
utilize
with the exception of

Alternative
many
decide
collect
so
about
by or with
use
except

Addendum 2 contains a complete list of the default file. Some of the entries are
c'

o

o

o

o

o

STYLE and DICTION D-9

short forms of problem phrases. For example, the phrase "the fact" is found in
all of the following and is sufficient to point out the wordiness to the user:

Phrase
accounted for by the fact that
an example of this is the fact that
based on the fact that
despite the fact that
due to the fact that
in light of the fact that
in view of the fact that
notwithstanding the fact that

Alternative
caused by
thus
because
although
because
because
smce
although

Entries in Addendum 2 preceded by ,,- " are not matched. See Section 7 for
details on the use of ,,- ".

The user may supply her/his own pattern file with the flag "-f patfiIe". In
this case the default file will be loaded first, followed by the user file. This
mechanism allows users to suppress patterns contained in the default file or to
include their own pet peeves that are not in the default file. The flag "-n" will
exclude the default file altogether. In constructing a pattern file, blanks should
be used before and after each phrase to avoid matching substrings in words. For
example, to find all occurrences of the word "the", the pattern" the " should be
used. The blanks cause only the word "the" to be matched and not the string
"the" in words like there, other, and therefore. One side effect of surrounding
the words with blanks is that when two phrases occur without intervening words,
only the first will be matched.

4. EXPLAIN
The last program, EXPLAIN, is an interactive thesaurus for phra'5es found

by DICTION. The user types one of the phrases bracketed by DICTION and
EXPLAIN responds with suggested substitutions for the phrase that will improve
the diction of the document.

5. Results

5.1. STYLE
To get baseline statistics and check the program's accuracy, we ran STYLE

on 20 technical documents. There were a total of 3287 sentences in the sample.
The shortest document was 67 sentences long; the longest 339 sentences. The
documents covered a wide range of subject matter, including theoretical comput­
ing, physics, psychology, engineering, and affirmative action. Table 1 gives the
range, median, and standard dev.iation of the various style measures. As you will
note most of the measurements have a fairly wide range of values across the sam­
ple documents.

As a comparison, Table 2 gives the median results for two different tee hnical
authors, a sample of instructional material, and a sample of the Federalist
Papers. The two authors show similar styles, although author 2 uses somewhat
shorter sentences and longer words than author 1. Author 1 uses all types of sen­
tences, while author 2 prefers simple and complex sentences, using few compound
or compound-complex sentences. The other major difference in the styles of these
authors is the location of subordination. Author 1 seems to prefer embedded or

D-IO STYLE and DICTION

Table 1
Text Statistics on 20 Technical Documents

Readability

variable

Kincaid
automated
Cole-Liau
Flesch

sentence info. av sent length
av word length
av nonfunction length
short sent
long sent

sentence types simple
complex
compound
compound-complex

verb types tobe
auxiliary
infinitives
passives

word usage prepositions
conjunction
adverbs
nouns
adjectives
pronouns
nominalizations

sentence openers prepositions
adverbs
subject
verbs
subordinating conj
conjunctions
expletives

minimum maximum mean standard deviation

9.5
9.0

10.0
8.9

15.5
4.61
5.72

23%
7%

31%
19%
2%
2%

26%
10%
8%

12%

10.1%
1.8%
1.2%

23.6%
15.4%
1.2%
2%

6%
0%

56%
0%
1%
0%
0%

16.9
17.4
16.0
17.0

30.3
5.63
7.30

46%
20%

71%
50%
14%
19%

64%
40%
24%
50%

15.0%
4.8%
5.0%

31.6%
27.1%

8.4%
5%

19%
20%
85%
4%

12%
4%
6%

13.3
13.3
12.7
14.4

21.6
5.08
6.52

33%
14%

49%
33%
7%

10%

44.7%
21%
15.1%
29%

12.3%
3.4%
3.4%

27.8%
21.1%

2.5%
3.3%

12%
9%

70%
1%
5%
0%
2%

2.2
2.5
1.8
2.2

4.0
.29
.45

5.9
2.9

11.4
8.3
3.3
4.8

10.3
8.7
4.8
9.3

1.6
.9

1.0
1.7
3.4
1.1

.8
3.4
4.6
8.0
1.0
2.7
1.5
1.7

trailing subordination, while author 2 begins many sentences with the subordi­
nate clause. The documents tested for both authors 1 and 2 were technical docu­
ments, written for a technical audience. The instructional documents, which are
written for craftspeople, vary surprisingly little from the two technical samples.
The sentences and words are a little longer, and they contain many passive and
auxiliary verbs, few adverbs, and almost no pronouns. The instructional docu­
ments contain many imperative sentences, so there are many sentence with verb
openers. The sample of Federalist Papers contrasts with the other samples in
almost every way.

5.2. DICTION

r-­
I
\.._-

In the few weeks that DICTION has been available to users about 35,000
sentences have been run with about 5,000 string matches. The authors using the
program seem to make the suggested changes about 50-75% of the time. To
date, almost 200 of the 450 strings in the default file have been matched. (\
Although most of these phrases are valid and correct in some contexts, the 50- ",-- -'
75% change rate seems to show that the phrases are used much more often than

STYLE and DICTION D-11

C Table 2
Text Statistics on Single Authors

variable author 1 author 2 inst. FED
readability Kincaid 11.0 10.3 10.8 16.3

automated 11.0 10.3 11.9 17.8
Coleman-Liau 9.3 10.1 10.2 12.3
Flesch 10.3 10.7 ·10.1 15.0

sentence info av sent length 22.64 19.61 22.78 31.85
av word length 4.47 4.66 4.65 4.95
av nonfunction length 5.64 5.92 6.04 6.87
short sent 35% 43% 35% 40%
long sent 18% 15% 16% 21%

sentence types simple 36% 43% 40% 31%
complex 34% 41% 37% 34%
compound 13% 7% 4% 10%

0 compound-complex 16% 8% 14% 25%
verb type tobe 42% 43% 45% 37%

auxiliary 17% 19% 32% 32%
infinitives 17% 15% 12% 21%
passives 20% 19% 36% 20%

word usage prepositions 10.0% 10.8% 12.3% 15.9%
conjunctions 3.2% 2.4% 3.9% 3.4%
. adverbs 5.05% 4.6% 3.5% 3.7%
nouns 27.7% 26.5% 29.1% 24.9%

0 adjectives 17.0% 19.0% 15.4% 12.4%
pronouns 5.3% 4.3% 2.1% 6.5%
nominalizations 1% 2% 2% 3%

sentence openers prepositions 11% 14% 6% 5%
adverbs 9% 9% 6% 4%
subject 65% 59% 54% 66%
verb 3% 2% 14% 2%
su bordinating conj 8% 14% 11% 3%
conjunction 1% 0% 0% 3%

0 expletives 3% 3% 0% 3%

concise diction warrants.

6. Accuracy

6.1. Sentence Identification
The correctness of the STYLE output on the 20 document sample was

checked in detail. STYLE misidentified 129 sentence fragments as sentences and
incorrectly joined two or more sentences 75 times in the 3287 sentence sample.
The problems were usually because of nonstandard formatting commands, unk-
nown abbreviations, or lists of non-sentences. An impossibly long sentence found
as the longest sentence in the document usually is the result of a long list of
non-sen tences.

0

D-12 STYLE and DICTION

6.2. Sentence Types
Style correctly identified sentence type on 86.5% of the sentences in the 1'-. •. - "

sample. The type distribution of the sentences was 52.5% simple, 29.9% com-
plex, 8.5% compound and 9% compound-complex. The program reported 49.5%
simple, 31.9% complex, 8% compound and 10.4% compound-complex. Looking
at the errors on the individual documents, the number of simple sentences was
under-reported by about 4% and the complex and compound-complex were over-
reported by 3% and 2%, respectively. The following matrix shows the programs
output vs. the actual sentence type.

Program Results
simple complex compound comp-complex

Actual simple 1566 132 49 17
Sentence complex 47 892 6 65

Type compound 40 6 207 23
comp-complex 0 52 5 249

The system's inability to find imperative sentences seems to have little effect
on most of the style statistics. A document with half of its sentences imperative
was run, with and without the imperative end marker. The results were identical
except for the expected errors of not finding verbs as sentence openers, not count­
ing the imperative sentences, and a slight difference (1%) in the number of nouns
and adjectives reported.

6.3. Word Usage
The accuracy of identifying word types reflects that of PARTS, which is

about 95% correct. The largest source of confusion is between nouns and adjec­
tives. The verb counts were checked on about 20 sentences from each document
and found to be about 98% correct.

7. Technical Details

7.1. Finding Sentences
The formatting commands embedded in the text increase the difficulty of

finding sentences. Not all text in a document is in sentence form; there are head­
ings, tables, equations and lists, for example. Headings like "Finding Sentences"
above should be discarded, not attached to the next sentence. However, since
many of the documents are formatted to be phototypeset, and contain font
changes, which usually operate on the most important words in the document,
discarding all formatting commands is not correct. To improve the programs'
ability to find sentence boundaries, the deformatting program, DEROFF [13], has
been given some knowledge of the formatting packages used on the UNIX operat­
ing system. DEROFF will now do the following:

1. Suppress all formatting macros that are used for titles, headings, author's
name, etc.

2. Suppress the arguments to the macros for titles, headings, author's name,
etc.

\ ...

o

o

o

o

o

STYLE and DICTION D-13

3. Suppress displays, tables, footnotes and text that is centered or in no-fill
mode.

4. Substitute a place holder for equations and check for hidden end markers.
The place holder is necessary because many typists and authors use the
equation setter to change fonts on important words. For this reason, header
files containing the definition of the EQN delimiters must also be included as
input to STYLE. End markers are often hidden when an equation ends a
sentence and the period is typed inside the EQN delimiters.

5. Add a "." after lists. If the flag -ml is also used, all lists are suppressed.
This is a separate flag because of the variety of ways the list macros are
used. Often, lists are sentences that should be included in the analysis. The
user must determine how lists are used in the document to be analyzed.

Both STYLE and DICTION call DEROFF before they look at the text. The
user should supply the -ml flag if the document contains many lists of non­
sentences that should be skipped.

7.2. Details of DICTION
The program DICTION is based on the string matching program FGREP.

FGREP takes as input a file of patterns to be matched and a file to be searched
and outputs each line that contains any of the patterns with no indication of
which pattern was matched. The following changes have been added to FGREP:

1. The basic unit that DICTION operates on is a sentence rather than a line.
Each sentence that contains one of the patterns is output.

2. Upper case letters are mapped to lower case.

3. Punctuation is replaced by blanks.

4 All pattern matches in the sentence are found and surrounded with "[" "]" .
5. A method for suppressing a string match has been added. Any pattern that

begins with ,,- " will not be matched. Because the matching algorithm finds
the longest substring, the suppression of a match allows words in some
correct contexts not to be matched while allowing the word in another con­
text to be found. For example, the word "which" is often incorrectly used
instead of "that" in restrictive clauses. However, "which" is usually correct
when preceded by a preposition or ",". The default pattern file suppresses
the match of the common prepositions or a double blank followed by
"which" and therefore matches only the suspect uses. The double blank
accounts for the replaced comma.

8. Conclusions
A system of writing tools that measure some of the objective characteristics

of writing style has been developed. The tools are sufficiently general that they
may be applied to documents on any subject with equal accuracy. Although the
measurements are only of the surface structure of the text, they do point out
problem areas. In addition to helping writers produce better documents, these
programs may be useful for studying the writing process and finding other formu­
lae for measuring readability.

D-14 STYLE and DICTION

References

1. L. L. Cherry, "PARTS - A System for Assigning Word Classes to English
Text," submitted Communications of the ACM.

2. B. W. Kernighan and J. R. Mashey, "The UNIX Programming Environ­
ment," Software - Practice & Experience, 9, 1-15 (1979).

3. G. R. Klare, "Assessing Readability," Reading Research Quarterly, 1974-
1975, 10 , 62-102.

4. E. A. Smith and P. Kincaid, "Derivation and validation of the automated
readability index for use with technical materials," Human Factors, 1970, 12,
457-464.

5. J. P. Kincaid, R. P. Fishburne, R. L. Rogers, and B. S. Chissom, "Derivation
of new readability formulas (Automated Readability Index, Fog count, and
Flesch Reading Ease Formula) for Navy enlisted personnel," Navy Training
Command Research Branch Report 8-75, Feb., 1975.

6. M. Coleman and T. L. Liau, "A Computer Readability Formula Designed for
Machine Scoring," Journal of Applied Psychology, 1975, 60, 283-284.

7. R. Flesch, "A New Readability Yardstick," Journal of Applied Psychology,
1948, 32, 221-233.

8. E. U. Coke, private communication.

9. D. W. Ewing, Writing for Results, John Wiley & Sons, Inc., New York, N.
Y. (1974).

10. G. Leggett, C. D. Mead and W. Charvat, Prentice-Hall Handbook for Writ- (
ers, Seventh Edition, Prentice-Hall Inc., Englewood Cliffs, N. J. (1978). ,-

II. E. B. Coleman, "Learning of Prose Written in Four Grammatical Transfor­
mations," Journal of Applied Psychology, 1965, vol. 49, no. 5, pp. 332-341.

12 A. V. Aho and M. J. Corasick, "Efficient String Matching: an aid to Biblio­
graphic Search," Communications of the ACM, 18, (6), 333-340, June 1975.

13. Bell Laboratories, "UNIX TIME-SHARING SYSTEM: UNLY
PROGRAMMER'S MANUAL, "Seventh Edition, Vol. 1 (January 1979).

-------------------------------------_ .. _ __ .. __

STYLE and DICTION D-15

0 Addendum 1

STYLE Abbreviations

a. d.
A.M.
a. m.
b. c.
Ch.
ch.
ckts.
dB.
Dept.

0
dept.
Depts.
depts.
Dr.
Drs.
e. g.
Eq.
eq.
et al.

0 etc.
Fig.
fig.
Figs.
figs.
ft.
i. e.
in.
Inc.

0 Jr.
jr.
mi.
Mr.
Mrs.
Ms.
No.
no.
Nos.
nos.
P. M.
p. m.
Ph. D.
Ph. d.
Ref.

0 ref.
Refs.
refs.

D-16

St.
vs.
yr.

STYLE and DICTION

c-

STYLE and DICTION D-17

0 Addendum 2

Default DICTION Patterns

a great deal or center portion rea.rful tha.t in the ronn or
a large number or check into rew in nUIIi>er in the inst3Jlce or
alo~or check on rue away in the interlm
a rmjority or check up on final completion in the last analysis
a need ror circle around final ending in the matter of
a number of close proJdmlty final outcoxre in the near future
a particular preference for collaborate together final result in the neighborbood of
a preference for collect together finalize in the not too distant future
a sma.ll nwmer or combine together find It interesting to know in the proxlnity of
a tendency to corre to an end first 3Jld forermst in the range of
aboverrentxmed cornrrence first beginnings in the sazre way as described
absolutely complete comrmn accord first lnltla.ted in the shape or
absolutely essential compensation firstly In the vicinity of
accompllshed completely ellmlnated follow a.tter in this case
accordingly comprise following alter in view of the
actlv3.te concemlng for the purpose of in vIo13.t1on of
actual conduct an investigation or for the reason that inasmuch as

0
added increrrents conjecture for the simple reason that indicate
adequate enough connect up for this reason Indicative of
advent consensus of oplnlon for your inronna.tion initia.llze
alford m opportunity consequent result f'rom the point of view of lnltiate
aggregate consollda.te together CUll 3Jld complete injurious to
all of construct genera.lly agreed inquire
all throughout contemplate good and lnslde or
along the llne continue on got to Institute a
m indication of continue to rema.ln gratultous intents and purposes
ma.Jyzation could of greatly mlnlmlze Intermingle
and etc count up head up lrregardless
and or couple together help but Is defined as
mother additional debate about helps in the production of Is used to control
any and all declde on hoperuI Is when
arrive at a deleterious effect trand when Is where

0 as a matter of fact derrean tr at all possible It Is incunbent
as a rrethod of demonstrate impact it stands to reason
as good or better than depreciate in value implerrent It was noted that if
as or now deserving of Important essentla.ls jOint cooperation
as per desira.ble benefits Importantly joint partnership
as regards desirous or In a large rreasure just exactly
as related to dlfIerent than in a position to kind of
as to dlscontinue in accordance know about
assistance dlsutillty In advance of last but not least
assistance to divide up in agreem::nt with later on
assistance to doubt but in all cases leaving out of consideration
assuningthat due to in ba.clc or llable
at a later date duly noted in behalf of llnkup
at about during the tl.rrn that in behind lltera.lly

0 at above each and every in between llttle doubt that
at all tl.rres early beginnings in case lose out on
at an early date effectuate in close proJdmlty lots of
at below emotional reellngs in conlllct with maln essentl3.ls
at the present empty out in conjunction with make a
at thetl.rrnwhen enclosed herein in connection with make a.djustrrents to
at this point in tl.rrn enclosed herewith in fact make an
at this tl.rrn end result in large rreasure make application to
at which tl.rrn end up in rmny cases make contact with
at your ea.rllest convenience endeavor in rmst cases make xrentlon of
authorization enter In in II\Y oplnlon I think make out a llst of
awruI enter into in order to make the acqua.intance of
basic Cunda.rrenta.is enthused in rare cases make the adjustmmt
basically entirely complete in rererence to manner
be cognizant or equa.lly good as in regard to ma.xlmnn pos..c:lble
being as essentially in regards to meanIngru\
being that eventuate in rela.tlon with meet up with
brier in duration every now and then in short supply xrelt down
bring to a conclusion exactly Identical in size rrelt up
but that experiencing dl1llculty in tenns of xrethodology
but what rabricate in the armunt of might of
by Jre3.DS of face up to in the case of minlmlze as far as possible
by the use of fa.cilltate in the course or minor importance
carry out experlxrents facts and figures In the event miss out on

0
center about fast in action in the field or mxliflcation
center around fea.rful of

D-18 STYLE and DICTION

IDJre preferable seems apP3leJlt worth whlle
IIXlSt unique send a communication would or
must or short space or tlrre Ing behavior
mutual cooperation should or wise
necessary requisite slngle unit - whlch
necessitate situation - about whlch
need ror so as to - a.rter whlch
nlce sort or - at whlch
not be un spell out - between whlch
not In a position to still continue - bywhlch
not or a high order or accuracy still rema.ln - rorwhlch
not un subsequent - fromwhlch
notwithstanding substantially In agre:emmt - In which
or considerable rmgnitude succeed In - Intowhlch
or that suggestive or - orwhlch
or the oplnlon that superior than - on which
off or surrounding clrcumstances - on which
on a few occasions take appropriate - overwhlch
on account or take cognizance or - through which
on beha.lCor take Into consideration - to which
on the grounds that tenred as - under which
on the occa.slon tennlnate - upon which
on the part or tennlnatlon - with which
one or the the author - without which
open up the authors - clockwise
operates to correct the case that - likewise

outside or the ract - otherwise
over with the roregolng
overa.ll the roreseeable future
past history the CUllest possible extent
perceptive or the majority or
perform a treasUreIrent the nature
perform the treasUreIrent the necessity or
pennlts the reduction or the only dUlerence being that
personalIze the order or
perta.lnlng to the point that
pbyslca.l size the truth Is
plan ahead there are not many
plan ror the future through the medium or
plan In advance through the use or
plan on throughout the entire
present a conclusion tlrre Interval
present a report to summarlze the above
presently total efilct or all thls
prior to totality
prioritize transpire
proceed to true facts
procure try and
productive or ultlrmte end
prolong the duration under a separate cover
protrude out from under date or
provided that under separate cover
pursuant to under the necessity to
put to use In underlyIng purpose
range all the way from undertake a study
reason Is because unlCormly consistent
reason why unique
recur agaln until such tlrre as
reduce down up to thls tlrre
rererba.ck upshot
reference to thls utlllze
reflective or very
rep.rdJ.ng very complete
regretCUl very unique
relnltlate vital
relative to which
repeat a.ga.ln with a view to
representative or with rererence to
resultant effect with regard to
resume a.ga.ln with the exception or
retreat back with the object or
return a.ga.ln with the result that
return back with thls In mind, It Is clear that
revert back within the rea.lm or posslblllty
seal off without further delay

o

o

o

o

Appendix E : Refer - A Bibliography System

Introduction

Bill Tuthill

Computing Services
University of California

Berkeley, CA 94720

Taken together, the refer programs constitute a database system for use with
variable-length information. To distinguish various types of bibliographic material, the
system uses labels composed of upper case letters, preceded by a percent sign and fol­
lowed by a space. For example, one document might be given this entry:

%A Joel Kies
%T Document Formatting on Unix Using the -ms Macros
%1 Computing Services
%C Berkeley
%D 1980

Each line is called a field, and lines grouped together are called a record; records are
separated from each other by a blank line. Bibliographic information follows the labels,
containing data to be used by the refer system. The order of fields is not important,
except that authors should be entered in the same order as they are listed on the docu­
ment. Fields can be as long as necessary, and may even be continued on the following
line(s).

The labels are meaningful to nroif/troif macros, and, with a few exceptions, the
refer program itself does not pay attention to them. This implies that you can change
the label codes, if you also change the macros used by nroif/troif. The macro package
takes care of details like proper ordering, underlining the book title or journal name,
and quoting the article's title. Here are the labels used by refer, with an indication of
what they represent:

E -2

%H
%A
%Q
%T
%S
%J
%B
%R
%V
%N
%E
%P
%1
%C
%D
%0
%K
%L
%X

Header commentary, printed before reference
Author's name
Corporate or foreign author (unreversed)
Title of article or book
Series title
Journal containing article
Book containing article
Report, paper, or thesis (for unpublished material)
Volume
Number within volume
Editor of book containing article
Page number(s)
Issuer (publisher)
City where published
Date of publication
Other commentary, printed at end of reference
Keywords used to locate reference
Label used by -k option of refer
Abstract (used by roflbib, not by refer)

Refer

Only relevant fields should be supplied. Except for %A, each field should be given only
once; in the case of multiple authors, the senior author should come first. The %Q is
for organizational authors, or authors with Japanese or Arabic names, in which cases the
order of names should be preserved. Books should be labeled with the %T, not with the
%B, which is reserved for books containing articles. The %J and %B fields should
never appear together, although if they do, the %J will override the %B. If there is no
author, just an editor, it is best to type the editor in the %A field, as in this example:

%A Bertrand Bronson, ed.

The %E field is used for the editor of a book (%B) containing an article, which has its
own author. For unpublished material such as theses, use the %R field; the title in the
%T field will be quoted, but the contents of the %R field will not be underlined. Unlike
other fields, %H, %0, and %X should contain their own punctuation. Here is a modest
example:

%A Mike E. Lesk
%T Some Applications of Inverted Indexes on the Unix System
%B Unix Programmer's Manual
%1 Bell Laboratories
%C Murray Hill, NJ
%D 1978
%V 2a
%K refer mkey inv hunt
%X Difficult to read paper that dwells on indexing strategies,
giving little practical advice about using \ffirefer\fP.

c

c

Note that the author's name is given in normal order, without inverting the surname;
inversion is done automatically, except when %Q is used instead of %A. We use %X
rather than %0 for the commentary because we do not want the comment printed all
the time. The %0 and %H fields are printed by both refer and roflbib; the %X field ("
is printed only by roftbib, as a detached annotation paragraph.---

Refer E -3

o Data Entry with Addbib

o

o

o

o

The addbib program is for creating and extending bibliographic databases. You
must give it the filename of your bibliography:

% addbib database

Every time you enter addbib, it asks if you want instructions. To get them, type y ; to
skip them, type RETURN. Addbib prompts for various fields, reads from the keyboard,
and writes records containing the refer codes to the database. After finishing a field
entry, you should end it by typing RETURN. If a field is too long to fit on a line, type a
backslash (\) at the end of the line, and you will be able to continue on the following
line. Note: the backslash works in this capacity only inside addbib.

A field will not be written to the database if nothing is entered into it. Typing a
minus sign as the first character of any field will cause addbib to back up one field at a
time. Backing up is the best way to add multiple authors, and it really helps if you for­
get to add something important. Fields not contained in the prompting skeleton may
be entered by typing a backslash as the last character before RETURN. The following
line will be sent verbatim to the database and addbib will resume with the next field.
This is identical to the procedure for dealing with long fields, but with new fields, don't
forget the % key-letter.

Finally, you will be asked for an abstract (or annotation), which ,viII be preserved
as the %X field. Type in as many lines as you need, and end with a control-D (hold
down the CTRL button, then press the d key). This prompting for an abstract can be
suppressed with the -a command line option.

After one bibliographic record has been completed, addbib will ask if you want to
continue. If you do, type RETURN; to quit, type q or n (quit or no). It is also possible
to use one of the system editors to correct mistakes made while entering data. After the
Continue? prompt, type any of the following: edit, ex, vi, or ed you will be placed
inside the corresponding editor, and returned to addbib afterwards, from where you
can either quit or add more data.

If the prompts normally supplied by addbib are not enough, are in the wrong
order, or are too numerous, you can redefine the skeleton by constructing a promptfile.
Create some file, to be named after the -p command line option. Place the prompts you
want on the left side, followed by a single TAB (control-I), then the refer code that is to
appear in the bibliographic database. Addbib will send the left side to the screen, and
the right side, along with data entered, to the database.

Printing the Bibliography

Sortbib is for sorting the bibliography by author (%A) and date (%D), or by data
in other fields. It is quite useful for producing bibliographies and annotated bibliogra­
phies, which are seldom entered in strict alphabetical order. It takes as arguments the
names of up to 16 bibliography files, and sends the sorted records to standard output
(the terminal screen), which may be redirected through a pipe or into a file.

The -sKEYS flag to sortbib will sort by fields whose key-letters are in the I(EYS
string, rather than merely by author and date. Key-letters in I(EYS may be followed
by a '+' to indicate that all such fields are to be used. The default is to sort by senior
author and date (printing the senior author last name first), but -sA+D will sort by all
authors and then date, and -sATD will sort on senior author, then title, and then date.

E -4 Refer

Roftbib is for running off the (probably sorted) bibliography. It can handle anno­
tated bibliographies annotations are entered in the %X (abstract) field. Roftbib is a
shell script that calls refer -B and nroff -mbib. It uses the macro definitions that
reside in /usr/lib/tmac/tmac.bib, which you can redefine if you know nrofl' and troff.
Note that refer will print the %H and %0 commentaries, but will ignore abstracts in
the %X field; roftbib will print both fields, unless annotations are suppressed with the
-x option.

The following command sequence will lineprint the entire bibliography, organized
alphabetically by author and date:

% sortbib database I roftbib I lpr

This is a good way to proofread the bibliography, or to produce a stand-alone bibliogra­
phy at the end of a paper. Incidentally, roftbib accepts all flags used with nrofl'. For
example:

% sortbib database I roftbib - Tdtc -s1

will make accent marks work on a DTC daisy-wheel printer, and stop at the bottom of
every page for changing paper. The -n and -0 flags may also be quite useful, to start
page numbering at a selected point, or to produce only specific pages.

Roftbib understands four command-line number registers, which are something like
the two-letter number registers in -ms. The -rNl argument will number references
beginning at one (1); use another number to start somewhere besides one. The -rV2 flag
will double-space the entire bibliography, while -rVl will double-space the references,
but single-space the annotation paragraphs. Finally, specifying -rL6i changes the line
length from 6.5 inches to 6 inches, and saying -rO Ii sets the page offset to one inch,
instead of zero. (That's a capital 0 after -r, not a zero.)

Citing Papers with Refer

The refer program normally copies input to output, except when it encounters an
item of the form:

.[
partial citation
.]

The partial citation may be just an author's name and a date, or perhaps a title and a
keyword, or maybe just a document number. Refer looks up the citation in the biblio­
graphic database, and transforms it into a full, properly formatted reference. If the par­
tial citation does not correctly identify a single work (either finding nothing, or more
than one reference), a diagnostic message is given. If nothing is found, it will say No
such paper. If more than one reference is found, it will say Too many hits. Other diag­
nostic messages can be quite cryptic; if you are in doubt, use checknr to verify that all
your .['s have matching .],s.

When everything goes well, the reference will be brought in from the database,
numbered, and placed at the bottom of the page. This citation, lesk inverted indexes
for example, was produced by:

-----------------_._-----------_ ... _._._- -

o

o

o

o

o

Refer E -5

This citation,
.[
lesk inverted indexes
·]
for example, was produced by

The .[and .] markers, in essence, replace the .FS and .FE of the -ms macros, and also
provide a numbering mechanism. Footnote numbers will be bracketed on the the line­
printer, but superscripted on daisy-wheel terminals and in troff. In the reference itself,
articles will be quoted, and books and journals will be underlined in nroff, and italicized
in troff.

Sometimes you need to cite a specific page number along with more general biblio­
graphic material. You may have, for instance, a single document that you refer to
several times, each time giving a different page citation. This is how you could get
p. 10 in the reference:

.[
kies document formatting
%P 10
·]

The first line, a partial citation, will find the reference in your bibliography. The second
line will insert the page number into the final citation. Ranges of pages may be
specified as %P 56-78.

When the time comes to run off a paper, you will need to have two files: the biblio­
graphic database, and the paper to format. Use a command line something like one of
these:

% refer -p database paper I nroff -ms
% refer -p database paper I tbl I nroff -ms
% refer -p database paper I tbl I neqn I nroff -ms

If other preprocessors are used, refer should precede tbl, which must in turn precede
eqn or neqn. The -p option specifies a private database, which most bibliographies
are.

Refer's Command-line Options

Many people like to place references at the end of a chapter, rather than at the
bottom of the page. The -e option will accumulate references until a macro sequence of
the form

.[
$LIST$
·]

is encountered (or until the end of file). Refer will then write out all references col­
lected up to that point, collapsing identical references. Warning: there is a limit
(currently 200) on the number of references that can be accumulated at one time.

It is also possible to sort references that appear at the end of text. The -s/(EYS
flag will sort references by fields whose key-letters are in the KEYS string, and permute
reference numbers in the text accordingly. It is unnecessary to use -e with it, since -s
implies -e. Key-letters in KEYS may be followed by a '+' to indicate that all such

E -6 Refer

fields are to be used. The default is to sort by senior author and date, but -sA+D will
sort on all authors and then date, and -sA + T will sort by authors and then title.

Refer can also make citations in what is known as the Social or Natural Sciences
format. Instead of numbering references, the -1 (letter ell) flag makes labels from the
senior author's last name and the year of publication. For example, a reference to the
paper on Inverted Indexes cited above might appear as [Lesk1978a]. It is possible to
control the number of characters in the last name, and the number of digits in the date.
For instance, the command line argument -16,2 might produce a reference such as
[Kernig78c].

Some bibliography standards shun both footnote numbers and labels composed of
author and date, requiring some keyword to identify the re'rerence. The -k flag indi­
cates that, instead of numbering references, key labels specified on the %L line should
be used to mark references.

/'--------"
I~ ,

'-" .. /'

The -n flag means to not search the default reference file, located in (.,.--'
/usr/dict/papers/Rv7man. Using this flag may make refer marginally faster. The -an _
flag will reverse the first n author names, printing Jones, J. A. instead of J. A. Jones.
Often -al is enough; this will reverse the names of only the senior author. In some ver-
sions of refer there is also the -f flag to set the footnote number to some predetermined
value; for example, -f23 would start numbering with footnote 23.

Making an Index

Once your database is large and relatively stable, it is a good idea to make an index
to it, so that references can be found quickly and efficiently. The indxbib program
makes an inverted index to the bibliographic database (this program is called pubindex
in the Bell Labs manual). An inverted index could be compared to the thumb cuts of a
dictionary instead of going all the way through your bibliography, programs can move
to the exact location where a citation is found.

Indxbib itself takes a while to run, and you will need sufficient disk space to store
the indexes. But once it has been run, access time will improve dramatically. Further­
more, large databases of several million characters can be indexed with no problem.
The program is exceedingly simple to use:

% indxbib database

Be aware that changing your database will require that you run indxbib over again. If
you don't, you may fail to find a reference that really is in the database.

Once you have built an inverted index, you can use lookbib to find references in
the database. Lookbib cannot be used until you have run indxbib. When editing a
paper, lookbib is very useful to make sure that a citation can be found as specified. It
takes one argument, the name of the bibliography, and then reads partial citations from
the terminal, returning references that match, or nothing if none match. Its prompt is
the greater-than sign.

~'

(
"

o

o

o

o

o

Refer

% lookbib database
> lesk inverted indexes
%A Mike E. Lesk
%T Some Applications of Inverted Indexes on the Unix System
%J Unix Programmer's Manual
%1 Bell Laboratories
%C Murray Hill, NJ
%D 1978
%V 2a
%X Difficult to read paper that dwells on indexing strategies,
giving little practicaJ advice about using \fBrefer\fP.
>

E -7

If more than one reference comes back, you will have to give a more precise citation for
refer. Experiment until you find something that works; remember that it is harmless
to overspecify. To get out of the lookbib program, type a control-D alone on a line;
lookbib then exits with an "EOT" message.

Lookbib can also be used to extract groups of related citations. For example, to
find all the papers by Brian Kernighan found in the system database, and send the out­
put to a file, type:

% lookbib /usr /dict/papers/Ind > kern.refs
> kernighan
> EOT
% cat kern.refs

Your file, kern.refs, will be full of references. A similar procedure can be used to pull
out all papers of some date, all papers from a given journal, all papers containing a cer­
tain group of keywords, etc.

Refer Bugs and Some Solutions

The refer program will mess up if there are blanks at the end of lines,especially
the %A author line. Addbib carefully removes trailing blanks, but they may creep in
again during editing. Use an editor command g/ *$/s/ / / to remove trailing blanks
from your bibliography.

Having bibliographic fields passed through as string definitions implies that interpo­
lated strings (such as accent marks) must have two backslashes, so they can pass
through copy mode intact. For instance, the word telephone 'would have to be
represented:

te \ \ * ' Ie \ \ * ' phone

in order to come out correctly. In the %X field, by contrast, you will have to use single
backslashes instead. This is because the %X field is not passed through as a string, but
as the body of a paragraph macro.

Another problem arises from authors with foreign names. When a name like
Valery Giscard d'Estaing is turned around by the -a option of refer, it will appear as
d'Estaing, Valery Giscard, rather than as Giscard d'Estaing, Valery. To prevent this,
enter names as follows:

E -8 Refer

%A Vale\ \ * ~ ry Giscard\Od'Estaing
%A Alexander Csoma\Ode\OKo\ \ *:ro\ \ *:s

(The second is the name of a famous Hungarian linguist.) The backslash-zero is an
nroff/troff request meaning to insert a digit-width space. It will protect against faulty
name reversal, and also against mis-sorting.

Footnote numbers are placed at the end of the line before the . [macro. This line
should be a line of text, not a macro. As an example, if the line before the .[is a .R
macro, then the .R will eat the footnote number. (The.R is an -ms request meaning
change to Roman font.) In cases where the font needs changing, it is necessary to do the
following:

\fIet al. \fR
.[
awk aho kernighan weinberger
.]

Now the reference will be to Aho et ale awk aho kernighan The \fI changes to italics,
and the \fR changes back to Roman font. Both these requests are nroff/troff requests,
not part of -ms. If and when a footnote number is added after this sequence, it will
indeed appear in the output.

Internal Details of Refer

You have already read everything you need to know in order to use the refer
bibliography system. The remaining sections are provided only for extra information,
and in case you need to change the way refer works.

The output of refer is a stream of string definitions, one for each field in a refer­
ence. To create string names, percent signs are simply changed to an open bracket, and
an [F string is added, containing the footnote number. The %X, %Y and %Z fields are
ignored; however, the annobib program changes the %X to an .AP (annotation para­
graph) macro. The citation used above yields this intermediate output:

.ds [F 1

.]-

.ds [A Mike E. Lesk

.ds [T Some Applications of Inverted Indexes on the Unix System

.ds [J Unix Programmer's Manual

.ds [I Bell Laboratories

.ds [C Murray Hill, NJ

.ds [D 1978

.ds [V 2a

.nr [T 0

.nr [A 0

.nr [0 0

.] [1 journal-article

These string definitions are sent to nroff, which can use the -ms macros defined in
/usr/lib/mx/tmac.xref to take care of formatting things properly. The initializing
macro .]- precedes the string definitions, and the labeled macro .] [follows. These are
changed from the input .[and .] so that running a file twice through refer is harmless. c·

o

o

o

o

o

Refer E -g

The .][macro, used to print the reference, is given a type-number argument, which
is a numeric label indicating the type of reference involved. Here is a list of the various
kinds of references:

Field Value Kind of Reference

%J 1
%B 3
%R%G
%1 2
%M 5
none 0

Journal Article
Article in Book
4Report, Government Report

Book
Bell Labs Memorandum (undefined)
Other

The order listed above is indicative of the precedence of the various fields. In other
words, a reference that has both the %J and %B fields will be classified as a journal
article. If none of the fields listed is present, then the reference wil1 be classified as
other.

The footnote number is flagged in the text with the following sequence, where
number is the footnote number:

([.number(.]

The \ *([. and \ *(.] stand for bracketing or superscripting. In nroff with low-resolution
devices such as the Ipr and a crt, footnote numbers will be bracketed. In troff, or on
daisy-wheel printers, footnote numbers will be superscripted. Punctuation normally
comes before the reference number; this can be changed by using the -P (postpunctua­
tion) option of refer.

In some cases, it is necessary to override certain fields in a reference. For instance,
each time a work is cited, you may want to specify different page numbers, and you
may want to change certain fields. This citation will find the Lesk reference, but will
add specific page numbers to the output, even though no page numbers appeared in the
original reference .

. [
lesk inverted indexes
%P 7-13
%1 Computing Services
%0 UNX 12.2.2 .
.]

The %1 line will also override any previous publisher information, and the %0 line will
append some commentary. The refer program simply adds the new %P, %1, and %0
strings to the output, and later strings definitions cancel earlier ones.

It is also possible to insert an entire citation that does not appear in the biblio­
graphic database. This reference, for example, could be added as follows:

E -10

· [
%A
%T
%1
%D
·]

Brian Kernighan
A TrofI Tutorial
Bell Laboratories
1978

Refer

This will cause refer to interpret the fields exactly as given, ,vithout searching the
bibliographic database. This practice is not recommended, however, because it's better
to add new references to the database, so they can be used again later.

If you want to change the way footnote numbers are printed, signals can be given
on the .[and .] lines. For example, to say See reference (2), the citation should appear
as:

See reference
· [(
partial citation
·D,

Note that blanks are significant on these signal lines. If a permanent change in the foot­
note format is desired, it's best to redefine the [. and .] strings.

Changing the Refer Macros

This section is provided for those who wish to rewrite or modify the refer macros.
This is necessary in order to make output correspond to specific journal requirements, or C
departmental standards. First there is an explanation of how new macros can be substi- _
tuted for the old ones. Then several alterations are given as examples. Finally, there is
an annotated copy of the refer macros used by roftbib .

The refer macros for nroft'/troft' supplied by the -ms macro package reside in
JusrJlibJmxJtmac.xref; they are reference macros, for producing footnotes or endnotes.
The, refer macros used by roftbib, on the other hand, reside in
JusrJlibJtmacJtmac.bib; they are for producing a stand-alone bibliography.

To change the macros used by roftbib, you will need to get your own version of ('
this shell script into the directory where you are working. These two commands will get '-- '
you a copy of roftbib and the macros it uses: t

% cp /usr/lib/tmac/tmac.bib bibmac

You can proceed to change bibmac as much as you like. Then when you use roftbib,
you should specify your own version of the macros, which will be substituted for the
normal ones

% roftbib -:om bibmac filename

where filename is the name of your bibliography file. Make sure there's a space between
-m and bibmac.

If you want to modify the refer macros for use with nroft' and the -ms macros,
you will need to get a copy of tmac.xref:

% cp /usr/lib/ms/s.ref refmac

These macros are much like bibmac, except they have .FS and .FE requests, to be used

o

o

o

o

o

Refer E -11

in conjunction with the -ms macros, rather than independently defined .XP and .AP
requests. Now you can put this line at the top of the paper to be formatted:

.so refmac

Your new refer macros will override the definitions previously read in by the -ms pack­
age. This method works only if refmac is in the working directory.

Suppose you didn't like the way dates are printed, and wanted them to be
parenthesized, with no comma before. There are five identical lines you will have to
change. The first line below is the old way, while the second is the new way:

. if !" \ \ * ([D '''' , \ \ * ([D \ c

.if !"\ *([D'''' \& (\ *([D)\c

In the first line, there is a comma and a space, but no parentheses. The \c at t.he end of
each line indicates to nroft' that it should continue, leaving no extra space in the out­
put. The \& in the second line is the do-nothing character; when followed by a space, a
space is sent to the output.

If you need to format a reference in the style favored by the Modern Language
Association or Chicago University Press, in the form (city: publisher, date), then you
will have to change the middle of the book macro [2 as follows:

\& (\c
. if !" \ \ * ([C" " \ \ * ([C:
\ \ *([I\c
.if !" \ \ *([D"" , \ \ *([D \ c
)\c

This would print (Berkeley: Computing Services, 1982) if all three strings were present.
The first line prints a space and a parenthesis; the second prints the city (and a colon) if
present; the third always prints the publisher (books must have a publisher, or else
they're classified as other); the fourth line prints a comma and the date if present; and
the fifth line closes the parentheses. You would need to make similar changes to the
other macros as well.

(
'-,_.-

o

o

o

o

o

READER'S RESPONSE

We use readers' comments in revising and improving our documents.

Document Title: DOMAIN/IX Text Processing Guide
Order Number: 005802
Revision: 00
Date of Publication: July, 1985

What is the best feature of this manual?

Please list any errors, omissions, or problem areas in the manual. (Identify errors by page,
section, figure, or table number wherever possible.)

What type of user are you?

___ Systems programmer; language _____________________ _
___ Applications programmer; language ________________ _
___ Manager/Professional

Technical Professional
___ Adminstrative/Support Personnel
___ Student programmer
___ User with little programming experience

Other

How often do you use your system?

Nature of your work on the DOMAIN System:

Your name

Organization

Street Address

City

Date

State Zip/Country

No postage necessary if mailed in the U.S. Fold on dotted lines (see reverse), tape, and mail.

0

s
0 ..,
2:
a.
!.
0
:J

CO
a.
2
iD
a.

:J
It)

FOLD
---_____________ -----------_________________________ J

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 78 CHELMSFORD, MA 01824

POSTAGE WILL BE PAID BY ADDRESSEE

APOLLO COMPUTER INC.
Technical Publications
P.O. Box 451
Chelmsford, MA 01824

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

._--,
FOLD

/--

L'

o

o

o

o

READER'S RESPONSE

We use readers' comments in revising and improving our documents.

Document Title: DOMAIN/IX Text Processing Guide
Order Number: 005802
Revision: 00
Date of Publication: July, 1985

What is the best feature of this manual?

Please list any errors, omissions, or problem areas in the manual. (Identify errors by page,
section, figure, or table number wherever possible.)

What type of user are you?

___ Systems programmer; language _____________________ _
___ Applications programmer; language ________________ _
___ Manager/Professional

Technical Professional
___ Adminstrative/Support Personnel
___ Student programmer
___ User with little programming experience

Other

How often do you use your system?

Nature of your work on the DOMAIN System:

Your name

Organization

Street Address

City

Date

State Zip/Country

No postage necessary if mailed in the U.S. Fold on dotted lines (see reverse), tape, and mail.

0 s
0 .,
2:
a.
S»

0'
j

(Q

a.
~
CD
a.
j
CD

FOLD

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 78 CHELMSFORD, MA 01824

POSTAGE WILL BE PAID BY ADDRESSEE

APOLLO COMPUTER INC.
Technical Publications
P.O. Box 451
Chelmsford, MA 01824

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

---,
FOLD

r""
''''-.. .

o

o

o

o

Instruction Sheet

Insert Tabbed Divider Page:

Editors
Formatters
Appendices

Before Page:

Chapter 1: An ed Tutorial
Chapter 1: A troff Tutorial
Appendix A: Advanced Editing on UNIX

('

