DOMAIN/IX Text Processing Guide

Order No. 005802
Revision 00
Software Release 9.0

Apollo Computer Inc.
330 Billerica Road
Chelmsford, MA 01824

Apollo Computer Inc. reserves the right to make changes in specifications
and other information contained in this publication without prior notice,
and the reader should, in all cases, consult Apollo Computer Inc. to
determine whether any such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF

APOLLO COMPUTER INC. HARDWARE PRODUCTS AND THE

LICENSING OF APOLLO COMPUTER INC. SOFTWARE CONSIST

SOLELY OF THOSE SET FORTH IN THE WRITTEN CONTRACTS

BETWEEN APOLLO COMPUTER INC. AND ITS CUSTOMERS. NO

REPRESENTATION OR OTHER AFFIRMATION OF FACT CON-

TAINED IN THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO

STATEMENTS REGARDING CAPACITY, RESPONSE-TIME PERFOR-

MANCE, SUITABILITY FOR USE OR PERFORMANCE OF PRODUCTS -
DESCRIBED HEREIN SHALL BE DEEMED TO BE A WARRANTY BY
APOLLO COMPUTER INC. FOR ANY PURPOSE, OR GIVE RISE TO
ANY LIABILITY BY APOLLO COMPUTER INC. WHATSOEVER.

IN NO EVENT SHALL APOLLO COMPUTER INC. BE LIABLE FOR
ANY INCIDENTAL, INDIRECT, SPECIAL, OR CONSEQUENTIAL
DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO
LOST PROFITS) ARISING OUT OF OR RELATING TO THIS PUBLI-
CATION OR THE INFORMATION CONTAINED IN IT, EVEN IF
APOLLO COMPUTER INC. HAS BEEN ADVISED, KNEW, OR SHOULD
HAVE KNOWN OF THE POSSIBILITY OF SUCH DAMAGES.

THE SOFTWARE PROGRAMS DESCRIBED IN THIS DOCUMENT ARE
CONFIDENTIAL INFORMATION AND PROPRIETARY PRODUCTS
OF APOLLO COMPUTER INC. OR ITS LICENSORS.

THIS SOFTWARE AND DOCUMENTATION ARE BASED IN PART ON
THE FOURTH BERKELEY SOFTWARE DISTRIBUTION UNDER

LICENSE FROM THE REGENTS OF THE UNIVERSITY OF CALIFOR-
NIA. \

© 1985 Apollo Computer Inc. All rights reserved.
Printed in U.S.A.
First Printing: July 1985

This document was formatted using the troff text formatter distributed
with DOMAIN®/IX™ software.

APOLLO and DOMAIN are registered trademarks of Apollo Computer Inc.
AEGIS, DGR, DOMAIN/IX, DPSS, DSEE, D3M, GMR, and GPR are trademarks of
Apollo Computer Inc.

7N

@

PREFACE

The DOMAIN®/IX™ Text Processing Guide and its companion volume,
The DOMAIN/IX User’s Guide consist of those papers normally included in
Volumes 2A, 2B, and 2C of the UNIXt Programmer’s Manual as supplied
by Bell Telephone Labs and the University of California at Berkeley.

The papers in these books have been revised where necessary to reflect
the DOMAIN system environment. However, we have tried to remain
aware of the history of UNIX as a multiuser system, and have included
the more important references to operations conducted at terminals.

Audience

This Text Processing Guide is intended for users who are familiar with
UNIX software, AEGIS™ software, and DOMAIN networks. We recom-
mend that you read one of the following tutorial introductions if you are
not already familiar with UNIX.

e Bourne, Stephen W. The UNIX System. Reading: Addison-Wesley,
1982,

e Kernighan, Brian W. and Rob Pike. The UNIX Programming
Environment, Englewood Cliffs, Prentice-Hall, 1984.

e Thomas, Rebecca and Jean Yates. A User Guide to the UNIX System.
Berkeley: Osborne/McGraw-Hill, 1982.

This document also assumes a basic familiarity with the DOMAIN system.
The best introduction to AEGIS and the DOMAIN system is Getting Started
With Your DOMAIN System (Order No. 002348). This manual explains
how to use the keyboard and display, read and edit text, and create and
execute programs. It also shows how to request DOMAIN system services
using interactive commands.

The Structure of This Document
This guide is divided into two sections and an appendix.

Section 1 deals with the text editors ed, ex, and vi. It also provides
a brief introduction to the DOMAIN system’s DM editor.

Section 2 covers the formatters troff and nroff, the macro packages
-me, -ms, and -mm, and the preprocessors eqn and tbl.

Appendices The Appendices are all UNIX papers related to text process-
ing. They are presented here in their original form.

t UNIX is a trademark of AT&T Bell Laboratories.

iii

Preface

Related Volumes

The DOMAIN/IX User’s Guide (Order No. 005802) is the first volume
you should read. It explains how DOMAIN/IX works, and contains exten-
sive material on the Bourne Shell, C Shell, and the communications utili-
ties Mail and uucp.

The DOMAIN/IX Command Reference for System V (Order No. 005798)
describes all the UNIX System V shell commands supported by the sys5
version of DOMAIN/IX.

The DOMAIN/IX Programmer’s Reference for System V (Order No.
005799) describes all the UNIX System V system calls and library funec-
tions supported by the sys5 version of DOMAIN/IX.

The DOMAIN/IX Command Reference for BSD4.2 (Order No. 005800)
describes all the BSD4.2 UNIX shell commands supported by the bsd4.2
version of DOMAIN/IX.

The DOMAIN/IX Programmer’s Reference for System V (Order No.
005801) describes all the BSD4.2 UNIX system calls and library functions
supported by the bsd4.2 version of DOMAIN/IX.

The DOMAIN C Language Reference (Order No. 002093) describes C
program development on the DOMAIN system. It lists the features of C,
describes the C library, and gives information about compiling, binding,
and executing C programs.

The DOMAIN System Command Reference (Order No. 002547) gives
information about using the DOMAIN system and describes the
DOMAIN commands.

The two-volume DOMAIN System Call Reference (Volume I Order No.
007196, Volume II Order No. 007194) describes calls to operating system
components that are accessible to user programs.

Documentation Conventions

Unless otherwise noted in the text, this manual uses the following sym-
bolic conventions.

command Command names and command-line options are set in bold
type. These are commands, letters, or symbols that you
must use literally.

output Output returned by programs or commands is shown in
Roman type.
[optional] Square brackets enclose optional items in formats and com-

mand descriptions.

Horizontal ellipses indicate that the preceding item can be
repeated one or more times.

iv

(N

name|z

Tz
SMALL CAPS

filename

Preface

Single numbers or numbers and letters enclosed in brackets
immediately following the name of a UNIX command or
library function refer to the section where you can find
reference information on the command or function in the
DOMAIN/IX Command Reference or the DOMAIN/IX

Programmer’s Reference.
A control character, where z is the character.

We use small caps for acronyms and key names; e.g., ASCII
and [RETURN| . Note that in tutorial material, we place a
box around the name of a key.

We use italics to represent generic, or meta- names in
example command lines, and also to represent a character
that stands for another character, as in dz where z is a
digit. In text, the names of files written or read by pro-
grams are set in italics.

Problems, Questions, and Suggestions

We appreciate comments from the people who use our system. In order
to make it easy for you to communicate with us, we provide the User
Change Request (UCR) system for software-related comments, and the
Reader’s Response form for documentation comments. By using these
formal channels, you make it easy for us to respond to your comments.

You can get more information about how to submit a UCR by consulting
the DOMAIN System Command Reference. Refer to the CRUCR
(Create User Change Request) command. You can also get more infor-
mation by typing:

/com/help crucr

in any UNIX or AEGIS shell. There is a Reader’s Response form at the
back of this manual. We’d appreciate it if you would take the time to
fill it out when you're ready to comment on this document.

2

CONTENTS

1. An ed Tutorial 1-1

1.1
1.2
1.3
1.4
1.5
1.6

1.7
1.8

1.9

1.10
1.11
1.12
1.13
1.14
1.15
1.16

1.17
1.18

2.1
2.2
2.3

2.4

2.5
2.6
2.7

INTRODUCTION 1-1

STARTING ED 1-1

CREATING TEXT [a] 1-2

ERROR MESSAGES {?] 1-3

WRITING TEXT TO A FILE [w] 1-3
LEAVING ed [q] 14

1.6.1 Exercisel 1-4

READING TEXT FROM A FILE [¢] 1-4
READING TEXT FROM A FILE [rf] 1-5
1.8.1 Exercise 2 1-5

PRINTING THE CONTENTS OF THE BUFFER
p 1-6

[1.!).1 Exercise 3 1-7

THE CURRENT LINE [.|] 1-7
DELETING LINES [d] 1-8

1.11.1 Exercise 4 1-9

MODIFYING TEXT [s] 1-9

1.12.1 Exercise 5 1-11

CONTEXT SEARCHING 1-11

1.13.1 Exercise 6 1-13

CHANGE [c] AND INSERT [i] 1-14
1.14.1 Exercise 7 1-15

MOVING TEXT [m] 1-15

THE GLOBAL COMMANDS [g, v] 1-16
SPECIAL CHARACTERS 1-17
SUMMARY OF COMMANDS AND LINE
NUMBERS 1-19

The ex Reference Manual 2-1

INTRODUCTION 2-1

USAGE 2-1

FILE MANIPULATION 2-2

2.3.1 Current File 2-2

2.3.2 Alternate File 2-2

2.3.3 Filename Expansion 2-2

2.3.4 Multiple Files and Named Buffers 2-3
2.3.5 Read Only 2-3

EXCEPTIONAL CONDITIONS 2-3

2.4.1 Errors and Interrupts 2-3

2.4.2 Recovering From Hangups and Crashes 2-3
EDITING MODES 2-4

COMMAND STRUCTURE 2-4

COMMAND PARAMETERS 2-4

2.71 Command Variants 2-5

2.7.2 Flags After Commands 2-5

vii

3.

2.8

2.9

3.1

3.3

3.4

3.5

2.7.3
2.74
2.7.5

Comments 2-5
Multiple Commands per Line 2-5
Reporting Large Changes 2-5

COMMAND ADDRESSING 2-6

2.8.1
2.8.2

2.10.1
2.10.2
2.10.3

Addressing Primitives 2-6

Combining Addressing Primitives 2-6
COMMAND DESCRIPTIONS 2-7
2.10 REGULAR EXPRESSIONS 2-18

Regular Expressions 2-18
Magic and Nomagic 2-18
Regular Expression Summary 2-18

2.10.4 Combining Regular Expression Primitives 2-19
Substitute Replacement Patterns 2-19
2.11 OPTION DESCRIPTIONS 2-20

2.12 LIMITATIONS 2-25

An Introduction to Display Editing With vi 3-1
INTRODUCTION 3-1
3.2 GETTING STARTED 3-1

2.10.5

3.2.1

3.2.2

3.2.3
3.2.4
3.2.5
3.2.6
3.2.7
3.2.8
3.2.9
3.2.10

Notational Conventions 3-2

Vi and the VT100 Emulator Program
Keyboard Mapping 3-2

Specifying Terminal Type 3-3
Editing a File 3-4

The Buffer 3-5

View 3-5

Arrow Keys 3-5

3-2

Special Characters: ESC, RETURN and DEL 3-5

Getting Out of the Editor 3-6

MOVING AROUND IN THE FILE = 3-7

3.3.1
3.3.2
3.3.3
3.3.4
3.3.5

Scrolling and Paging 3-7

Searching, Goto, and Previous Context
Moving Around on the Screen 3-8
Moving Within a Line 3-9

Summary of Cursor Movement and Scrolling 3-10

MAKING SIMPLE CHANGES 3-10

3.4.1
3.4.2
3.4.3
3.4.4
3.4.5
3.4.6

MOVING, REARRANGING, AND DUPLICATING TEXT 3-13

3.5.1
3.5.2
3.5.3

Inserting 3-10 :
Making Small Corrections 3-11
More Corrections: Operators 3-12
Operating on Lines 3-12

Undo 3-13

Summary of Insert/Delete Functions

Low Level Character Motions 3-13
Higher-Level Text Objects 3-14

3-7

3-13

Rearranging and Duplicating Text 3-15

viii

N

—.

4,

3.6

3.7

3.8

3.9

3.10

3.5.4 Summary of Higher-Level Motions and
Objects 3-17

HIGH LEVEL COMMANDS 3-17

3.6.1 Writing, Quitting, Editing New Files 3-17

3.6.2 Escaping to a Shell 3-17

3.6.3 Marking and Returning 3-18

3.6.4 Adjusting the Screen 3-18

ADVANCED TOPICS 3-18

3.7.1 Editing on Slow Terminals 3-19

3.7.2 Options, Set, and Editor Startup Files 3-20

3.7.3 Recovering Lost Lines 3-21

3.7.4 Recovering Lost Files 3-21

3.7.5 Continuous Text Input 3-22

3.7.6 Features for Program Editing 3-22

3.7.7 Filtering Portions of the Buffer 3-23

3.7.8 Commands for Editing LISP 3-23

3.7.9 Macros 3-24

ABBREVIATIONS 3-25

3.8.1 Word Abbreviations 3-25

3.8.2 Editor Command Abbreviations 3-25

MORE DETAILS 3-25

3.9.1 Line Representation in the Display 3-26

3.9.2 Counts 3-26

3.9.3 More File Manipulation Commands 3-27

3.9.4 More About Searching for Strings 3-28

3.9.5 More About Input Mode 3-29

3.9.6 Uppercase Only Terminals 3-30

3.9.7 Viandex 3-30

3.9.8 Open Mode: vi on Hardcopy Terminals and
“Glass TTY'’s” 3-31

A SUMMARY OF VI COMMANDS 3-31

3.10.1 Entry and Exit 3-32

3.10.2 Cursor and Page Motion 3-33

3.10.3 Searches 3-36

3.10.4 Text Insertion 3-37

3.10.5 Text Deletion 3-37

3.10.6 Text Replacement 3-38

3.10.7 Moving Text 3-38

3.10.8 Miscellaneous Commands 3-40

3.10.9 Special Insert Characters 3-41

3.10.10 “:” Commands 3-42

3.10.11 Special Arrangements for Startup 3-43

3.10.12 Set Commands 3-43

An Introduction to the DM Editor 4-1

4.1
4.2
4.3
44

THE DISPLAY MANAGER EDITOR 4-1
OPENING AN EDIT PAD 4-2

SAVING THE CONTENTS OF AN EDIT PAD 4-3
EDIT PAD MODES 4-3

ix

4.5 INSERTING CHARACTERS 4-4
4.5.1 Inserting a Text String 4-4
4.5.2 Inserting an End-of-File Mark 4-5
4.5.3 Inserting a TAB 4-5
4.6 DELETING TEXT 4-5
4.6.1 Deleting Characters 4-5
4.6.2 Deleting Words 4-5
4.6.3 Deleting Lines 4-6
4.7 DEFINING A RANGE OF TEXT 4-6
4.8 COPYING, CUTTING, AND PASTING TEXT 4-6
4.8.1 Using Paste Buffers 4-6
4.8.2 Copying Text 4-7
4.8.3 Cutting Text 4-7
4.8.4 Pasting Text 4-8 '
4.9 USING REGULAR EXPRESSIONS 4-8
4.10 SEARCHING FOR TEXT 4-8
4.10.1 Case Sensitivity 4-9
4.10.2 Cancelling a Search Operation 4-9
4.11 SUBSTITUTING TEXT 4-10
4.11.1 Substituting All Occurrences of a String 4-10
4.11.2 Substituting the First Occurrence of a String 4-10

4.11.3 Changing the Case of Letters 4-10
4.12 UNDOING PREVIOUS COMMANDS 4-10

~

O

Chapter 1: An ed Tutorial

1.1 INTRODUCTION

Ed is a line-oriented text editor that supports a wide variety of terminals
(including all DOMAIN nodes running DOMAIN/IX. It allows the interac-
tive creation and modification of text based on your directions. The text
may be a document, a program, or perhaps data for a program.

This introduction is meant to simplify learning ed. The recommended
way to learn ed is to read this document, and simultaneously use ed to
follow the examples. Then, read the description of ed in the
DOMAIN/IX Command Reference.

As you read this chapter, we recommend that you also do the exercises.
They cover material not completely discussed in the actual text. There
is a summary of ed commands at the end of this chapter.

Since this chapter is an introduction and a tutorial, no attempt is made
to cover more than a part of the facilities that ed offers (although this
fraction includes the most frequently used parts). Since there is not
enough space here to explain basic UNIX procedures, we will assume that
you know how to log in to a UNIX shell, and that you have a general
understanding of a file.

1.2 STARTING ED
Once you log in, you may invoke ed in any shell window by typing

ed
RETURN

You are now ready to go — ed is waiting for your instructions.
Note: You may invoke ed in either a Bourne Shell or a C Shell

using the procedure shown above. Also, you may invoke ed
in an AEGIS Shell by either typing

$ ‘bin‘ed
RETURN
or setting the AEGIS Shell’s command search rules to include

/bin, then typing

ed
RETURN

as shown in the first example above.

ed Tutorial 1-1

SECTION 1 Editors

1.3 CREATING TEXT |[a] -

Suppose you want to create some text starting from scratch. Perhaps
you are typing the very first draft of a paper; clearly, it will have to start
somewhere, and undergo modifications later. This section will show how
to create some text, just to get started. Later we’ll talk about how to
change text.

When you first start ed, it is like working with a blank piece of paper —
there is no text or information present. You must supply the text. Usu-
ally, this is done by typing in the text, or by reading it into ed from a
file. In this example, we will type in some text. Later, we will return to
learn how to read files. ‘

First a bit of terminology. In ed jargon, the text being worked on is said
to be ‘‘kept in a buffer.” Think of the buffer as a work space, if you like,
or simply as the information that you are going to be editing. In effect
the buffer is like the piece of paper, on which we will write things, then
change some of them, and finally file the whole thing away for another
day.

/w

You tell ed what to do to your text by typing instructions called ‘‘com-

mands.” Most commands consist of a single letter, which must be typed

in lowercase. Each ed command is typed on a separate line. (Sometimes

the command is preceded by information about what line or lines of text I
are to be affected. We will discuss this shortly.) Ed makes no response ‘

to most commands; there is no prompting or typing of messages like

“ready”. (This silence is preferred by experienced users, but sometimes

presents a problem for beginners.)

The first command is append, written as the letter
a

all by itself. It means “append (or add) text lines to the buffer, as I type SN
them in.” Appending is rather like writing fresh material on a piece of \

paper.

So to enter lines of text into the buffer, just type an a followed by a
RETURN, followed by the lines of text you want, like this:

a
Now is the time
for all good men
to come to the aid of their party.

.

The only way to stop appending is to type a line that contains only a

_ period. The “.” is used to tell ed that you have finished appending. If
ed seems to be ignoring you, type an extra line with just *.” on it. You
may find you’ve added some extra lines to your text, which you'll have to

take out later. ()

1-2 ed Tutorial

SECTION 1 Editors

When the append command is done, the buffer will contain the three
lines

Now is the time
for all good men
to come to the aid of their party.

The ““a’ and “‘.” aren’t there, because they are not text.

To add more text, just issue another a command, and continue typing.

1.4 ERROR MESSAGES [?]

If at any time you make an error in the commands you type to ed, it will
tell you by displaying
?

The editor’s response does not explain your error; make certain you are
entering a valid command.

1.5 WRITING TEXT TO A FILE [w]

It’s likely that you'll want to save your text for later use. To write out
the contents of the buffer onto a file, use the write command

w

followed by the filename you want to write on. This will copy the
buffer’s contents onto the specified file (destroying any previous informa-
tion on the file). To save the text on a file named practice, for example,
type

w practice

Leave a space between w and the file name. Ed responds by printing
the number of characters it wrote out. In this case, ed would respond
with

68

(Remember that blanks and the RETURN character at the end of each
line are included in the character count.) Writing a file just makes a copy
of the text; the buffer’s contents are not disturbed, so you can go on
adding lines to it. This is an important point. Ed always works on a
copy of a file, rather than on the file itself. No change in the contents of
a file takes place until you give a w command.

Note: Writing out the text onto a file from time to time as it is
: being created is a good idea. That way, if the system crashes
or if you make some horrible mistake, you will only lose the
text currently in the buffer. Text that has been written to a
file is relatively safe.

ed Tutorial 1-3

SECTION 1 ’ Editors

TN

(_/’”
1.6 LEAVING ed [q]

To terminate an ed session, save your text by writing it onto a file using
the w command, and then type the command

q

which stands for quit. The system will respond by returning control to
the Shell, which will display its prompt character. At this point your
buffer vanishes, with all its text, which is why you want to write it out
before quitting.

Note: Actually, ed will print ? if you try to quit without writing.
At that point, write if you want; if not, typing another q will
get you out.

1.6.1 Exercise 1 N
Enter ed and create some text using

a

lines of text

lines of text

lines of text
Write it out using w. Then leave ed by giving it the q command. After (
you return to the Shell, print the file, to see the results.

1.7 READING TEXT FROM A FILE [e]

A common way to get text into the buffer is to read it from a file in the

file system. This is what you do to edit text that you saved with the w

command in a previous session. The edit command e puts the entire S
contents of a file into the buffer. So if you had saved the three lines L
““Now is the time”, etc., with a w command in an earlier session, the ed -
command

e practice

would fetch the entire contents of the file “practice’” into the buffer, and
respond

68
— the number of characters in ‘“practice.”

Note: If anything is already in the buffer when you do an e, it will
be overwritten (deleted).

If you use the e command to read a file into the buffer, then you need
not use a file name after a subsequent w command; ed remembers the ,
last file name used in an e command, and w will write on this file. Thus -

)

o
\

1-4 ed Tutorial

SECTION 1 Editors

a good way to operate is

ed

e file

editing sesston
w

q

This way, you can simply say w from time to time and be secure in the
knowledge that as long as you used the correct file name with e, you are
writing into the proper file each time.

You can find out at any time what file name ed is remembering by typ-
ing the file command f. In this example, if you typed

f
ed would reply

practice

1.8 READING TEXT FROM A FILE [r]

Sometimes you want to read a file into the buffer without destroying
anything that is already there. This is done by the read command r.
The command

r practice

will read the file “practice’ into the buffer; it adds it to the end of what-
ever is already in the buffer. If you do a read after an edit:

e practice
r practice

the buffer will contain two copies of the text (six lines).

Now is the time
for all good men
to come to the aid of their party.
Now is the time
for all good men
to come to the aid of their party.

Like the w and e commands, r prints the number of characters read in,
after the reading operation is complete.

Generally speaking, r is used less than e.
1.8.1 Exercise 2

Experiment with the e command - try reading and printing various files.
You may get an error ?name, where name is the name of a file; this
means that the file doesn’t exist, typically because you spelled the file
name wrong, or perhaps because you are not allowed to read or write on
it. Try alternately reading and appending to see that they work

ed Tutorial 1-5

SECTION 1 Editors

similarly. Verify that
ed filename

is exactly equivalent to
ed

e filename
What does

f filename
do?

1.9 PRINTING THE CONTENTS OF THE BUFFER [p]

To print or list the contents of the buffer (or parts of it) on the terminal,
use the print command

P

To do this, specify the lines where you want printing to begin and where
you want it to end, separated by a comma, and followed by the letter p.
Thus to print the first two lines of the buffer, for example, (that is, lines
1 through 2) say

1,2p
(Starting line=1, ending line=2, print.) Ed will respond with

Now is the time
for all good men

If you wanted to print all the lines in the buffer, you could use 1,3p as
above if you knew there were exactly 3 lines in the buffer. But in gen-
eral, you don’t know how many there are, so what do you use for the
ending line number? Ed provides a shorthand symbol for ‘“line number
of last line in buffer”” — the dollar sign $. Use it this way:

1,$p

This will print all the lines in the buffer (line 1 to last line.) If you want
to stop the printing before it is finished, type 1I. This sends ed an inter-
rupt, causing it to display its

?
prompt and wait for the next command.
To print the last line of the buffer, you could use
$,$p
but ed lets you abbreviate this to
$p
You can print any single line by typing the line number followed by a p.

1-6 ed Tutorial

O

SECTION 1 Editors

Thus
1p
produces the response
Now is the time
which is the first line of the buffer.

In fact, ed lets you abbreviate even further: you can print any single line
by typing just the line number. There is no need to type the letter p.
So, if you say

$
ed will print the last line of the buffer.
You can also use $ in combinations like
$—1,5p
which prints the last two lines of the buffer.
1.9.1 Exercise 3

As before, create some text using the a command, then experiment with
the p command. You will find, for example, that you can’t print line O
or a line beyond the end of the buffer, and that attempts to print a
buffer in reverse order by saying

3,1p

don’t work.

1.10 THE CURRENT LINE |[.]

Suppose your buffer still contains the six lines that you have just typed
1,3p

and ed has printed the three lines for you. Try typing just
p

with no line numbers. This will print
to come to the aid of their party.

which is the third line of the buffer. In fact, it is the last (most recent)
line that you have done anything with. You can repeat this p command
without line numbers, and it will continue to print line 3.

This is because ed maintains a record of the last line you did anything to
(in this case, line 3, which you just printed). This most recent line is
referred to by the shorthand symbol

(pronounced *“dot”). Dot is a line number in the same way that $ is; it

ed Tutorial 1-7

SECTION 1 Editors

means exactly ‘‘the current line,” or loosely, ‘‘the line you most recently/
did something to.” You can use it in several ways. One possibility is to
say

»Sp

’

This will print all the lines from (including) the current line to the end of
the buffer. In our example, these are lines 3 through 6.

Some commands change the value of dot, while others do not. The p
command sets dot to the number of the last line printed; the last com-
mand will set both . and $ to 6.

Dot is most useful when used in combinations like this one:
—+1

(or equivalently, .+1p). This means ‘“‘print the next line” and is a handy
way to step slowly through a buffer. You can also say

—1 (or ~1p)

which means “print the line before the current line.”” This enables you to
go backwards if you wish. Another useful combination is something like

0_3,._1p
which prints the previous three lines.

Don’t forget that all of these commands change the value of dot. You
can find out what dot is at any time by typing

Ed will respond by printing the value of dot.

Let’s summarize some things about the p command and dot. Essentially,
p can be preceded by 0, 1, or 2 line numbers. If there is no line number
given, it prints the ‘“‘current line,” the line that dot refers to. If there is
one line number given (with or without the letter p), it prints that line
and sets dot to it; and if there are two line numbers, it prints all the lines
in that range (and sets dot to the last line printed.) If two line numbers
are specified, the first can’t be bigger than the second. (See Exercise 2.)

Typing a single return will cause printing of the next line — it’s
equivalent to .4+1p. Try it. Try typing a —; you will find that it’s
equivalent to .~1p.

1.11 DELETING LINES [d]

Suppose you want to get rid of the three extra lines in the buffer. This is
done by the delete command d. The d command deletes lines instead of
printing them, but is otherwise similar to p. The lines to be deleted are
specified for d exactly as they are for p:

1-8 ed Tutorial

Y
v)

SECTION 1 Editors

starting line, ending line d
Thus, the command
4,5d

deletes lines 4 through the end. Now there are three lines left, as you
can check by using

1,$p

Notice that $ now is line 3. Dot is set to the next line after the last line
deleted, unless the last line deleted is the last line in the buffer. In that
case, dot is set to $.

1.11.1 Exercise 4

Experiment with a, e, r, w, p and d until you are sure that you know
what they do, and until you understand how dot, $, and line numbers are
used.

Try using line numbers with a, r and w as well. You will find that a
will append lines after the line number that you specify (rather than
after dot); that r reads a file into the buffer after the line number you
specify (not necessarily at the end of the buffer); and that w will write
out exactly the lines you specify, not necessarily the whole buffer. These
variations are sometimes handy. For instance, you can insert a file at the
beginning of a buffer by saying

Or filename

and you can enter lines at the beginning of the buffer by saying

Oa
oo text ...

Notice that .w is very different from

w

1.12 MODIFYING TEXT [s]

The s (substitute) command is used to change individual words or letters
within a line or group of lines. You can use it to correct spelling mis-
takes and typing errors.

Suppose that due to a typing error, line 1 says
Now is th time

— the “e” has been omitted from “the.” You can use s to fix this, as
shown below

1s/th/the/

ed Tutorial 1-9

SECTION 1 Editors

This says: “‘in line 1, substitute for the characters th the characters the
.’ To verify that it works, use the

P
command. Ed will print the line, which should now read

Now is the time

Notice that ed set ‘‘dot’’ to the line where the substitution took place.
We know this because the p command printed that line. Dot is always
set this way when you use the s command.

The general way to use the substitute command is
starting_line#t, ending_line# s/ change this/to this/

Whatever string of characters is between the first pair of slashes is
replaced by whatever is between the second pair, in all the lines between
starting_line# and ending_line#£. Only the first occurrence on each line
is changed, however. If you want to change every occurrence, see Exer-
cise 5. The rules for line numbers are the same as those for p, except
that dot is set to the last line changed.

Note: If no substitution took place, dot is not changed. This causes
an error message (?) to be printed as a warning.

Thus you can say
1,$s/speling/spelling/

and correct the first spelling mistake on each line in the text. If there
were a second (or a third) instance of “speling’ on any line, it would not
be corrected.

If no line numbers are given, the s command assumes you mean ‘‘make
the substitution on line dot’’, so it changes things only on the current
line. This leads to the very common sequence

s/something/something else/p

which makes some correction on the current line, and then prints it, so
you can see if the substitution worked out right. If it didn’t, you can try
again. (Notice that there is a p on the same line as the s command.
With few exceptions, p can follow any command; no other multi-
command lines are legal.)

It’s also legal to say
s/string//
which means “change string to nothing,”’” which is the same as saying

‘““delete string.”” This is useful for deleting extra words in a line or remov-
ing extra letters from words. For instance, if you had

1-10 ed Tutorial

TN

O

SECTION 1 Editors

Nowxx is the time
you can say
s/xx//p
to get
Now is the time

Notice that // (two adjacent slashes) means ‘“‘no characters”, not a
blank.

1.12.1 Exercise 5

Experiment with the substitute command. See what happens when you
substitute for some word on a line with several occurrences of that word.
For example, do this:

a
the other side of the coin
s/the/on the/p

You will get
on the other side of the coin

A substitute command changes only the first occurrence of the first
string.- You can change all occurrences by adding a g (for “‘global”) to
the s command, like this:

s/stringl1/string2/gp

Try other characters instead of slashes to delimit the two sets of charac-
ters in the s command — any character other than the blank or the tab
should work.

(If you get funny results using any of the characters
L8 [*\ &

read the section on ‘‘Special Characters.”)

1.13 CONTEXT SEARCHING
Suppose you have the original three line text in the buffer:

Now is the time
for all good men
to come to the aid of their party.

And suppose you want to find the line that contains ‘‘their”’ because you
want to change it to ‘‘the.”” Since there are only three lines in the buffer,
it’s pretty easy to keep track of what line the word “‘their” is on. But if
the buffer contained several hundred lines, and you’d been making

changes, deleting and rearranging lines, and so on, it wouldn’t be easy to

ed Tutorial 1-11

SECTION 1 Editors

know what text was on a given line. Context searching is simply a
method of specifying the desired line by specifying some of the text
that’s on the line, rather than specifying its line number.

The way to say ‘‘search for a line that contains this particular string of
characters’ is to type

[/ this particular string of characters/
delimited, as above, by slashes. For example, the ed command
/their/

is a context search which is sufficient to find the desired line; it will
locate the next occurrence of the characters between slashes (“their”). It
also sets dot to that line and prints the line for verification:

to come to the aid of their party.

““Next occurrence’’ means that ed starts looking for the string at line
.41 (dot plus one), searches to the end of the buffer, then continues at
line 1 and searches to line dot. (That is, when the search reaches line $
it “‘wraps around” to line 1 and continues searching.) It scans all the
lines in the buffer until it either finds the desired line or gets back to dot
again. If the given string of characters can’t be found in any line, ed
types the error message

?
Otherwise; it prints the first line in which the specified text appears.

You can combine the search for the desired line with the substitution
using the syntax below.

/their /s/their /the/p
which will yield
to come to the aid of the party.
There were three parts to that last command.
1. context search for the desired line
2. make the substitution
3. print the line

The expression /their/ is a context search expression. In essence, all
context search expressions are like this — a string of characters delimited
by slashes. Context searches are interchangeable with line numbers, so
they can be used by themselves to find and print a desired line, or as line
numbers for some other command, like s. They were used both ways in
the examples above.

Suppose the buffer contains the three familiar lines

1-12 . ed Tutorial

SECTION 1 Editors

Now is the time
for all good men
to come to the aid of their party.

Then the ed line numbers

/Now /+1
/good/
/party /-1

are all context search expressions, and they all refer to the same line (line
2). To make a change in line 2, you could say

/Now /+1s/good /bad/
/good/s/good/bad/

or

/party/—1s/good/bad/

The choice is dictated only by convenience. You could print all three
lines by typing

/Now/,/party/p

or
/Now/,/Now /+2p

or by any number of similar combinations. The first one of these might
be better if you don’t know how many lines are involved. (Of course, if
there were only three lines in the buffer, you’d use

1,%p
but not if there were several hundred.)

The basic rule is: a context search expression is the same as a line
number, so it can be used wherever a line number is needed.

1.13.1 Exercise 6

Experiment with context searching. Try a body of text with several
occurrences of the same string of characters, and scan through it using
the same context search.

Try using context searches as line numbers for the substitute, print, and
delete commands. (They can also be used with r, w, and a.)

Try context searching using ?text? instead of /text/. This scans lines
in the buffer in reverse order. This is sometimes useful if you go too far
while looking for some string of characters; it’s an easy way to back up.
(If you get funny results with any of the characters

LS\ &

ed Tutorial 1-13

SECTION 1 Editors

read the section on ‘“‘Special Characters.”)

Ed provides a shorthand for repeating a context search for the same
string. For example, the ed line number

/string/

will find the next occurrence of string. It often happens that this is not
the desired line, so the search must be repeated. This can be done sim-

ply by typing

/]

This shorthand stands for ‘‘the most recently used context search expres-
sion.” It can also be used as the first string of the substitute command,
as in

/string1/s/ [string2/
which will find the next occurrence of stringl and replace it by string2.
This can save a lot of typing. Similarly,

??

means ‘‘scan backwards for the same expression.”

1.14 CHANGE [c] AND INSERT [i]
“Change’’, written as
c

is used to replace a number of lines with different lines, which are typed
in at the terminal. For example, to change lines .41 through $ to some-
thing else, type

~+1,%c
. .. type the lines of text you want here . . .

The lines you type between the ¢ command and the . will take the place
of the original lines between start line and end line. This is most useful
in replacing a line or several lines that have errors in them.

If only one line is specified in the ¢ command, then just that line is
replaced. (You can type in as many replacement lines as you like.)
Notice the use of . (dot) to end the input; this works just like the . in
the append command and must appear by itself on a new line. If no line
number is given, line dot is replaced. The value of dot is set to the last
line you typed.

“Insert’ is similar to append; for instance,

1-14 ed Tutorial

P

SECTION 1 Editors

/string/i
. .. type the lines to be inserted here . . .

will insert the given text before the next line that contains string. The
text between i and . is inserted before the specified line. If no line
number is specified, dot is used. Dot is set to the last line inserted.

-1.14.1 Exercise 7

““Change” is rather like a combination of delete followed by insert.
Experiment to verify that

start, end d
i
... text. .

is almost the same as

start, end c
... bext. .

These are not precisely the same if line $ gets deleted. Check this out.
What is dot?

Experiment with a and i, to see that they are similar, but not the same.
You will observe that

line-number a
oo text . L.

appends after the given line, while

line-number i
oo text . ..

inserts before it. If no line number is given, i inserts before line dot,
while a appends after line dot.

1.15 MOVING TEXT [m]

The move command m is used for cutting and pasting; it lets you move
a group of lines from one place to another in the buffer. Suppose you
want to move the first three lines of the buffer to the end of the buffer.
You could do it by saying:

1,3w temp
$r temp
1,3d

but you can do it a lot easier with the m command:

ed Tutorial 1-15

SECTION 1 Editors

1,3m$
The general case is
start line, end line m after this line

Notice that there is a third line specified — where to move the text. Of

course, the lines to be moved can be specified by context searches; if you
had

First paragrapﬁ
end of first paragraph.
Second paragraph
end of second paragraph.
you could reverse the two paragraphs:
/Second/,/end of second/m/First/—1

Notice the —1: the moved text goes after the line mentioned. Dot gets
set to the last line moved.

1.16 THE GLOBAL COMMANDS |[g, v]

The global command g is used to execute one or more ed commands on

all the lines in the buffer that match some specified string. For example,
g/peling/p

prints all lines that contain “peling”. More usefully,

g/peling/s/ /pelling/gp

makes the substitution everywhere on the line, then prints each corrected
line. Compare this to

1,$s/peling/pelling/gp

which only prints the last line substituted. Another subtle difference is
that the g command does not return a ? if, for example, ‘“‘peling’’ is not
found. In the same circumstances, the s command will return a question
mark.

There may be several commands (including a, ¢, i, r, w, but not g); in
that case, every line except the last must end with a backslash \:

g/xxx/.-1s/abc/def/N
-+2s/ghi/jkl/N
-2,.p

makes changes in the lines before and after each line that contains
“xxx’’, then prints all three lines.

The v command is the same as g, except that the commands are exe-
cuted on every line that does not match the string following v:

1-16 ed Tutorial

'

O

SECTION 1 Editors

v/ /d

deletes every line that does not contain a blank.

1.17 SPECIAL CHARACTERS

You may have noticed unexpected results when you used such characters
as ., ¥, $, and others in context searches and the substitute command.
The reason is rather complex, although the cure is simple. Basically, ed
treats these characters as special, with special meanings. For instance, in
a context search or the first string of the substitute command only, .
means ‘‘any character,” not a period, so

/xy/

means ‘“‘a line with an x, any character, and ay,” not just ‘“a line with
an x, a period, and a y.” The following special characters can cause prob-
lems if not used correctly.

AR 2 B

Note: The backslash character \ is special to ed. If possible, avoid
using it.

If you have to use one of the special characters in a substitute command,

you can turn off its special meaning temporarily by preceding it with the
backslash. Thus

s/\\\.*/backslash dot star/
will change \.* into ““backslash dot star”.

Here is a synopsis of the other special characters. First, the circumflex *
signifies the beginning of a line. Thus

/ “string/

finds string only if it is at the beginning of a line; it will find “string of
pearls” but not ‘‘the string handler”. The dollar sign $ is just the oppo-
site of the circumflex; it means the end of a line:

/string$/

will only find an occurrence of string that is at the end of some line.
This implies, of course, that

/" string$/

will find only a line that contains just string, and

/"3/
finds a line containing exactly one character.

The character ., as we mentioned above, matches anything;

ed Tutorial 1-17

SECTION 1 Editors

)

{/’P
\

/x.y/

matches any of
X+y
x-y
Xy
Xy

This is useful in conjunction with *, which is a repetition character; a* is
a shorthand for “‘any number of a’s,” so .* matches any number of any
characters. This is used like this:

s/.*/stuff/
which changes an entire line, or

s/*// ¢
which deletes all characters in the line up to and including the last —

comma. (Since .* finds the longest possible match, this goes up to the
last comma.)

Brackets are used to delimit ‘‘character classes’’; for example,
/(0123456789 /

matches any single digit; any one of the characters inside the braces will .
cause a match. This can be abbreviated to [0-9]. ()

Finally, the & is another shorthand character. It is used only on the
right-hand part of a substitute command where it means ‘“‘whatever was
matched on the left-hand side’. It is used to save typing. Suppose the
current line contained

Now is the time

and you wanted to put parentheses around it. You could just retype the ‘
line, or you could say N

s/*/(0 T
s/$/)/

using your knowledge of * and $. But the easiest way is to use the &:
s/*/(&)/

This says ‘“‘match the whole line, and replace it by itself surrounded by
parentheses.” The & can be used several times in a line; consider using

s/ */&? &/
to produce
Now is the time? Now is the time!!

You don’t have to match the whole line, of course. If the buffer contains

1-18 ed Tutorial

O

SECTION 1 Editors

the end of the world
you could type

/world/s//& is at hand/
to produce

the end of the world is at hand

Examine this expression carefully. It illustrates how to take advantage of
ed to save typing. The string /world/ found the desired line; the short-
hand // found the same word in the line; and the & saves you from typ-
ing it again.

The & is a special character only within the replacement text of a substi-
tute command, and has no special meaning elsewhere. You can turn off
the special meaning of & by preceding it with a \:

s/ampersand/\ &/

will convert the word “‘ampersand’’ into its literal symbol & in the
current line.

1.18 SUMMARY OF COMMANDS AND LINE NUMBERS

The general form of ed commands is the command name, perhaps pre-
ceded by one or two line numbers, and, in the case of e, r, and w, fol-
lowed by a file name. Only one command is allowed per line, but a p
command may follow any other command (except for e, r, w and q).

a Append, that is, add lines to the buffer (at line dot, unless a
different line is specified). Appending continues until . is typed as
the first character on a new line. Dot is set to the last line
appended.

c Change the specified lines to the new text which follows. The new
- lines are terminated by a ., as with a. If no lines are specified,
replace line dot. Dot is set to the last line changed.

d Delete the lines specified. If none are specified, delete line dot.
Dot is set to the first undeleted line, unless $ is deleted, in which
case dot is set to $.

e Edit new file. Any previous contents of the buffer are thrown
away, so issue a w beforehand.

f Print remembered filename. If a name follows f, the remembered
name will be set to it.

g The command
g/--- [commands

will execute the commands on those lines that contain ---, which
can be any context search expression.

ed Tutorial 1-19

SECTION 1

baie

1-20

Insert lines before the specified line (or dot) until a . is typed as
the first character on a new line. Dot is set to the last line
inserted.

Move lines specified to after the line named after m. Dot is set to
the last line moved.

Print specified lines. If none are specified, print line dot. A single
line number is equivalent to line number p. A single return prints
.+1, the next line.

Quit ed. Wipes out all the text in the buffer if you enter it twice
in a row without first entering a w command.

Read a file into the buffer (at the end unless specified elsewhere.)
Dot is set to the last line read.

The command
s/string1/string2/

substitutes the characters stringl into string2 in the specified lines.

If no lines are specified, the command makes the substitution in
line dot. Dot is set to be the last line in which a substitution took
place, which means that if no substitution took place, dot is not
changed. s changes only the first occurrence of stringl on a line;
to change all of them, type a g after the final slash.

The command
v [---/ commands
executes commands on the lines that do not contain ---.
Writes out the buffer onto a file. Dot is not changed.
Print value of dot. =(by itself prints the value of $.)
The line
command-line
causes the command-line to be passed to the Shell and executed.

Context search, which searches for the next line that contains this
string of characters, and prints it. Dot is set to the line where the
string was found. Search starts at .41, wraps around from $ to 1,
and continues to dot, if necessary.

Context search in reverse direction; starts search at .—1, scans to
1, and wraps around to $.

ed Tutorial

Editors

)

@

SECTION1 Editors

Chapter 2: The ex Reference Manual

2.1 INTRODUCTION

Ex is a line-oriented text editor that supports both command- and
display-oriented editing. This chapter describes the command-oriented
part of ex; the display editing features of ex are described in Chapter 3
of this section, An Introduction to Display Editing with Vi.

This chapter is based on the original ex reference manual written at the
University of California at Berkeley.

2.2 USAGE

Each version of the editor has a set of options, which you can customize.
The command edit invokes a version of ex designed for more casual or
beginning users by changing the default settings of some of these options.
To simplify the description which follows we assume the default settings
of the options.

When invoked, ex determines the terminal type from the TERM variable
in the environment. If there is a TERMCAP variable in the environ-
ment, and the type of the terminal described there matches the TERM
variable, then that description is used. Also, if the TERMCAP variable
contains a pathname (beginning with a /), then the editor will seek the
description of the terminal in that file (rather than the default
/ete/termeap.) If there is a variable EXINIT in the environment, then
the editor will execute the commands in that variable; otherwise, if there
is a file .ezrc in your HOME directory, ex reads commands from that file,
simulating a source command. Option setting commands placed in
EXINIT or .exrc will be executed before each editor session.

A command to enter ex has the following prototype.

ex[=]|[=v][-ttag]|[-r][-1][-wn][-R] [+command] filename(s)

The most common case edits a single file with no options.
ex filename

The — command line option suppresses all interactive-user feedback. It is
useful when processing editor scripts in command files. The —v option is
equivalent to using vi rather than ex. The —t option is equivalent to an
initial tag command, editing the file containing the tag and positioning
the editor at its definition. The —r option is used in recovering after an
editor or system crash, retrieving the last saved version of the named file
or, if no file is specified, typing a list of saved files. The —1 option sets up
for editing LISP. It sets the showmatch and lisp options. The —w

ex 2-1

SECTION 1 Editors

option sets the default window size to n, and is useful on dialups to start
in small windows. The —R option sets the readonly option at the start.
filename arguments indicate files to be edited. An argument of the form
+command indicates that the editor should begin by executing the
specified command. If command is omitted, then it defaults to *$”, posi-
tioning the editor at the last line of the first file initially. Other useful
commands here are scanning patterns of the form */pat” or line
numbers, e.g. “‘+100" starting at line 100.

2.3 FILE MANIPULATION
2.3.1 Current File

Ex normally edits the contents of a single file, whose name is recorded in
the current file name. Ex performs all editing actions in a buffer (actu-
ally a temporary file) into which the text of the file is initially read.
Changes made to the buffer have no effect on the file being edited unless
and until the buffer contents are written out to the file with a write
command. After the buffer contents are written, the previous contents of
the written file are no longer accessible. When a file is edited, its name
becomes the current file name, and its contents are read into the buffer.

The current file is almost always considered to be edited. This means
that the contents of the buffer are logically connected with the current
file name, so that writing the current buffer contents onto that file, even
if it exists, is a reasonable action. If the current file is not edited, then
ex will not write on it, if it already exists.

Note: The file command will say “[Not edited]” if the current file is
not considered edited.

2.3.2 Alternate File

Each time a new value is given to the current file name, the previous
current file name is saved as the alternate file name. Similarly if a file is
mentioned but does not become the current file, it is saved as the alter-
nate file name.

2.3.3 Filename Expansion

Filenames within the editor may be specified using the normal Shell
expansion conventions. In addition, the character “%" in filenames is
replaced by the current file name and the character “#’’ by the alternate
file name.

Note: This feature makes it easy to deal alternately with two files
and eliminates the need for retyping the name supplied on an
edit command after a No write since last change diagnostic is
received.

5

SECTION 1 Editors

2.3.4 Multiple Files and Named Buffers

If more than one file is given on the command line, then the first file is
edited as described above. The remaining arguments are placed with the
first file in the argument list. The current argument list may be
displayed with the args command. The next file in the argument list
may be edited with the next command. The argument list may also be
respecified by a list of names to the nezt command. These names are
expanded; the resulting list of names becomes the new argument list, and
ex edits the first file on the list.

For saving blocks of text while editing, and especially when editing more
than one file, ex has a group of named buffers. These are similar to the

normal buffer, except that only a limited number of operations are avail-
able on them. The buffers have names a through z.

Note: It is also possible to refer to A through Z; the upper case
buffers are the same as the lower, but commands append to
named buffers rather than replacing when upper case names
are used.

2.3.5 Read Only

It is possible to use ex in read only mode to look at files that you have
no intention of modifying. This mode protects you from accidentally
overwriting the file. Read only mode is on when the readonly option is
set. It can be turned on with the —R command line option, by the view
command line invocation, or by setting the readonly option. It can be
cleared by setting noreadonly. It is possible to write, even while in read
only mode. You can write to a different file, or can use the ! form of
write, even while in read only mode.

2.4 EXCEPT‘IONAL CONDITIONS
2.4.1 Errors and Interrupts

When an error occurs, ex (optionally) rings the terminal bell and prints
an error diagnostic. If the primary input is from a file, editor processing
will terminate. If an interrupt signal is received, ex prints ‘‘Interrupt”
and returns to its command level. When the primary input is a file, then
ex will exit.

2.4.2 Recovering From Hangups and Crashes

If a hangup signal is received and the buffer has been modified since it
was last written out, or if the system crashes, either the editor (in the
first case) or the system (after it reboots in the second) will attempt to
preserve the buffer. The next time you log in you should be able to
recover the work you were doing. At most, you will lose a few lines of
changes from the last point before the hangup or editor crash. To
recover a file, you can use the —r option. If you were editing the file

ex 2-3

SECTION 1 Editors

resume, then you should change to the directory where you were when
the crash occurred, giving the command

€X -r resume

After checking that the retrieved file is intact, you can write it over the
previous contents of that file.

You should get mail from the system telling you when a file has been
saved after a crash. The command

ex —r

will print a list of files that have been saved for you. (In the case of a
hangup, the file will not appear in the list, although it can be recovered.)

2.5 EDITING MODES

Ex has five distinct modes. Of these, ‘‘command’’ mode is most often
used. Commands are entered in command mode when a ‘:’ prompt is
present, and are executed each time a complete line is sent. In In ‘“text
input’’ mode, ex gathers input lines and places them in the file. The
append, insert, and change commands use text input mode. No
prompt is printed when you are in text input mode. This mode is left by
typing a ‘.’ alone at the beginning of a line, and command mode resumes.

The last three modes are open and visual modes, entered by the com-
mands of the same name, and, within open and visual modes “text inser-
" tion” mode. Open and visual modes are described in Chapter 3 of this
section.

2.6 COMMAND STRUCTURE

Most ex command names are English words, and the initial prefixes of
the words are acceptable abbreviations. Any ambiguity in abbreviations
is resolved in favor of the more commonly used commands. As an exam-
ple, the command substitute can be abbreviated s while the shortest
available abbreviation for the set command is se.

2.7 COMMAND PARAMETERS

Most commands accept prefix addresses. These specify the lines in the
file upon which the command is to have an effect. The forms of these
addresses will be discussed below. A number of commands also may take
a trailing count specifying the number of lines to be involved in the com-
mand. These counts are rounded down if necessary. Thus the command
“10p”’ will print the tenth line in the buffer while ‘“delete 5 will delete
five lines from the buffer, starting with the current line.

Some commands take other information or parameters, which are always
given after the command name. Examples of this would be option names
in a set command i.e. ‘“‘set number’’, a file name in an edit command, a

2-4 ex

e’

™

SECTION 1 Editors

regular expression in a substitute command, or a target address for a copy
command, i.e. “1,5 copy 25,

2.7.1 Command Variants

A number of commands have two distinct variants. The variant form of
the command is invoked by placing an ‘!’ immediately after the com-
mand name. Some of the default variants may be controlled by options;
in this case, the ““!"’ serves to toggle the default.

2.7.2 Flags After Commands

The characters “#”, “p”’, and “1” may be placed after many commands.

Note: A “p” or “l” must be preceded by a blank or tab except in
the single special case ‘“‘dp”’.

The operation specified by any of these characters will be executed after
the command completes. Since ex normally prints the new current line
after each change, the trailing ‘‘p”’ is rarely necessary. Any number of
“4" or “~" characters may also be given with these flags. If they
appear, the specified offset is applied to the current line value before the
printing command is executed.

2.7.3 Comments

The “begin comment” character is the double quote: . Any ex com-
mand line beginning with ” is ignored. Comments beginning with ” may
also be placed at the ends of commands, except in cases where they could
be confused as part of text (Shell escapes and the substitute and map
commands).

2.7.4 Multiple Commands per Line

To place multiple commands on a line, separate each pair of commands
with the ““|"” character.

Note: The “‘global” commands, comments, and the Shell escape ““!”
must be the last command on a line, as they are not ter-
minated by a ‘|".

2.7.5 Reporting Large Changes

Most commands which change the contents of the editor buffer give feed-
back if the scope of the change exceeds a threshold given by the report
option. This feedback helps to detect undesirably large changes, so that
they may be quickly and easily reversed with an undo. After commands
such as global or visual, you will be informed if the net change in the

number of lines in the buffer during this command exceeds the report
threshold.

ex 2-5

SECTION 1 Editors

2.8 COMMAND ADDRESSING
In this section, we summarize ex command addressing.
2.8.1 Addressing Primitives

. (dot) The current line. Most commands leave the current line as
the last line which they affect. The default address for most com-
mands is the current line, thus ‘““dot” is rarely used alone as an
address.

n The nth line in the editor’s buffer, lines being numbered sequen-
tially from 1.

$ The last line in the buffer.
% An abbreviation for 1,$ (i.e., the entire buffer).

+n -n An offset relative to the current buffer line. The forms .43 +3
and +-4+ are all equivalent. If the current line is line 100, all
address line 103.

/pat/ Scan forward for a line containing pat. Pat may be a string or a
regular expression (as defined below).

?pat? Scan backward for a line containing paf. Pat may be a string or a
regular expression (as defined below).

Note: The scans normally wrap around the end of the buffer.
If all that is desired is to print the next line containing
pat, then the trailing / or ? may be omitted. If pat is
omitted or explicitly empty, then the last regular
expression specified is located. The forms \/ and \?
scan using the last regular expression used in a scan;
after a substitute, // and ?? would scan using the
substitute’s regular expression.

s, s]

z Before each non-relative motion of the current line ‘.’, the previ-
ous current line is marked with a tag, subsequently referred to as
‘27, This makes it easy to refer or return to this previous con-
text. Marks may also be established by the mark command,
using single lower case letters z and the marked lines referred to

¢’

as ‘"1,
2.8.2 Combining Addressing Primitives

Addresses to commands consist of a series of addressing primitives,
separated by ‘,” or ;. Such address lists are evaluated left-to-right.
When addresses are separated by ‘;’ the current line ‘.’ is set to the value
of the previous addressing expression before the next address is inter-
preted. If more addresses are given than the command requires, then all
but the last one or two are ignored. If the command takes two
addresses, the first addressed line must precede the second in the buffer.

Null address specifications are permitted in a list of addresses, the default

2-6 ex

-

N4

-

‘)

O

SECTION 1 Editors

in this case is the current line ‘.’; thus ‘,100’ is equivalent to ‘.,100’.

Note: It is an error to give a prefix address to a command which
expects none.

2.9 COMMAND DESCRIPTIONS
The following form is a prototype for all ex commands:
address command ! parameters count flags

All parts are optional. When use without arguments, the command
prints the next line in the file. Whenused within ‘‘visual” (vi) mode, ex

TRL)

ignores a ‘‘:” preceding any command.

In the following command descriptions, the default addresses are shown
in parentheses. These parentheses are not part of the command. Abbre-
viations, where allowed, are shown at the beginning of the description, in
brackets, as in [ab]. The brackets are not part of the abbreviation.

abbreviate word rhs [ab] Add the named abbreviation to the
current list. When in input mode in visual, if
word is typed as a complete word, it will be
changed to rhs.

(.)append [a] Reads the input text and places it after
the specified line. After the command, ‘.’
addresses the last line input or the specified
line if no lines were input. If address ‘0’ is

given, text is placed at the beginning of the
buffer.

a! The variant flag to append toggles the set-
ting for the autoindent option during the
input of text.

args The members of the argument list are
printed, with the current argument delimited
by ‘[’ and ‘]’

(.,.)change count [c] Replaces the specified lines with the input

text. The current line becomes the last line
input; if no lines were input it is left as for a
delete. '

c! The variant toggles autoindent during the
change.

(.,.)copy addr flags [co] A copy of the specified lines is placed
after addr, which may be ‘O’. The current
line ‘." addresses the last line of the copy.
The command t is a synonym for copy.

ex 2-7

SECTION 1

Editors

(.,.)delete buffer count flags

edit file

e! file

e+n file |

file

2-8

[d] Removes the specified lines from the
buffer. The line after the last line deleted
becomes the current line; if the lines deleted
were originally at the end, the new last line
becomes the current line. If a named buffer is
specified by giving a letter, then the specified
lines are saved in that buffer or appended to
it if an upper case letter is used.

[e], [ex] Used to begin an editing session on a
new file. The editor first checks to see if the
buffer has been modified since the last write
command was issued. If it has been, a warn-
ing is issued and the command is aborted.
The command otherwise deletes the entire
contents of the editor buffer, makes the
named file the current file and prints the new
filename. After ensuring that this file is an
ASCII file, the editor reads the file into its
buffer.

If the file is read without error, the number of
lines and characters read is typed. If there
were any non-ASCII characters in the file, they
are stripped of their non-ASCII high bits, and
any null characters in the file are discarded.
If none of these errors occurred, the file is
considered edited. If the last line of the input
file is missing the trailing newline character, it
will be supplied and a complaint will be
issued. This command leaves the current line
‘.’ at the last line read. If executed from
within open or visual, the current line is ini-
tially the first line of the file.

The variant form of edit suppresses the com-
plaint about modifications having been made
and not written from the editor buffer, thus
discarding all changes which have been made
before editing the new file.

Causes the editor to begin at line n rather
than at the last line; n may also be an editor
command containing no spaces, e.g.: +/pat/’.

[f] Prints the following: the current file name;
whether it has been ‘Modified]’ since the last
write command; whether it is read only; the

ex

TN
\

TN

O

SECTION 1

file file

(1, %) global pat cmds

g! /pat cmds

ex

Editors

current line; the number of lines in the buffer;
and the percentage of the way through the
buffer of the current line. In the rare case
that the current file is ‘[Not edited]’, this is
noted also; in this case, you have to use the
form w! to write to the file, since the editor is
not sure that a write won’t destroy some file

unrelated to the current contents of the
buffer.

The current file name is changed to file which
is considered ‘[Not edited]’.

[g] First marks each line among those
specified which matches the given regular
expression. Then the given command list is
executed with ““.” initially set to each marked
line.

The command list consists of the remaining
commands on the current input line and may
continue to multiple lines by ending all but
the last such line with a “\”. If ¢mds (and
possibly the trailing / delimiter) is omitted,
each line matching pat is printed. Append,
insert, and change commands and associ-
ated input are permitted; the *.”’ terminating
input may be omitted if it would be on the
last line of the command list. Open and
visual commands are permitted in the com-
mand list and take input from the terminal.

The global command itself may not appear
in cmds. The undo command is also not per-
mitted there, as undo instead can be used to
reverse the entire global command. The
options autoprint and autoindent are inhi-
bited during a global, and the value of the
report option is temporarily infinite, in defer-
ence to a report for the entire global.
Finally, the context mark “““ “”" is set to the
value of “.”” before the global command
begins. It is not changed during a global
command, except perhaps by an open or
visual within the global.

[v] The variant form of global runs c¢mds at
each line not matching pat.

SECTION 1

(.)insert

pto
L g

(.,.+1) join count flags

(.)k=z

(.,.)list count flags

map lhs rhs

(.)mark z

(.,.)move addr

2-10

Editors

[i] Places the given text before the specified
line. The current line is left at the last line
input; if there is no input, it is left at the line
before the addressed line. This command
differs from append only in the placement of
text.

The variant toggles autoindent during the
insert.

[3)] Places the text from a specified range of
lines together on one line. White space is
adjusted at each junction to provide at least
one blank character, two if there was a *‘.”" at
the end of the line, or none if the first follow-
ing character is a *“)”’. If there is already
white space at the end of the line, then the
white space at the start of the next line will

be discarded.

The variant causes a simple join with no
white space processing; the characters in the
lines are simply concatenated.

The k command is a synonym for mark. It
does not require a blank or tab before the fol-
lowing letter.

Prints the specified lines in a more unambigu-
ous way: tabs are printed as ‘““{I” and the end
of each line is marked with a trailing “$”.

The current line is left at the last line printed.

The map command is used to define macros
for use in visual mode. Lhs should be a single
character, or the sequence ‘“#n’’, where n is a
digit, referring to function key n. When this
character or function key is typed in visual
mode, it will be as though the corresponding
rhs had been typed. On terminals without
function keys, you can type ‘“‘#n’’.

Gives the specified line mark z, a single lower
case letter. The £ must be preceded by a
blank or a tab. The addressing form *“x”
then addresses this line. The current line is

not affected by this command.

[m The move command repositions the
specified lines to be after addr. The first of
the moved lines becomes the current line.

ex

4

O

SECTION 1

next

n filelist

n +command filelist

Editors

[n] The next file from the command line
argument list is edited.

The variant suppresses warnings about the
modifications to the buffer not having been
written out, discarding (irretrievably) any
changes which may have been made.

The specified filelist is expanded and the
resulting list replaces the current argument
list; the first file in the new list is then edited.
If command is given (it must contain no
spaces), then it is executed after editing the
first such file.

(.,.)number count flags [# or nu] Prints each specified line preceded

(.) open flags
(.) open/pat/flags

preserve

(.,.)print count

(.)put buffer

ex

by its buffer line number. The current line is
left at the last line printed.

[o] Enters intraline editing open mode at
each addressed line. If pat is given, then the
cursor will be placed initially at the beginning
of the string matched by the pattern. To exit
this mode use Q. See Chapter 3 of this sec-
tion for more details.

The current editor buffer is saved as though
the system had just crashed. This command
is for use only in emergencies when a write
command has resulted in an error and you
don’t know how to save your work. After a
preserve, you should seek help from a sys-
tem administrator.

[p or P] Prints the specified lines with non-
printing characters printed as control charac-
ters “1z ”’; delete (octal 177) is represented as
“1?”. The current line is left at the last line
printed.

[pu] Puts back previously deleted or
yanked lines. Normally, used with delete to
effect movement of lines, or with yank to
effect duplication of lines. If no buffer is
specified, then the last deleted or yanked text
is restored, but no modifying commands may
intervene between the delete or yank and
the put, nor may lines be moved between
files without using a named buffer. By using

2-11

SECTION 1

quit

q!

(.)read file

(.)read !command

recover file

2-12

Editors

a named buffer, text may be restored that was
saved there at any previous time.

[q] Causes ex to terminate. No automatic
write of the editor buffer to a file is per-
formed. However, ex issues a warning mes-
sage if the file has changed since the last
write command was issued, and does not
quit. Ex will also issue a diagnostic if there
are more files in the argument list. Normally,
you want to save your changes, and you
should give a write command; if you want to
discard them, use the q! command variant.

Quits from the editor, discarding changes to
the buffer without complaint.

[r] Places a copy of the text of the given file
in the editing buffer after the specified line. If
no file is given, the current file name is used.
The current file name is not changed unless
there is none, in which case, file becomes the
current name. The sensibility restrictions for
the edit command apply here also. If the file
buffer is empty and there is no current name,
then ex treats this as an edit command.
Address “0” is legal for this command and
causes the file to be read at the beginning of
the buffer. Statistics are given as for the edit
command when the read successfully ter-
minates. After a read, the current line is the
last line read. Within open and visual, the
current line is set to the first line read rather
than the last.

Reads the output of command into the buffer
after the specified line. This is not a variant
form of the command, rather a read specify-
ing a command rather than a filename; a
blank or tab before the Shell escape ! is man-
datory.

Recovers file from the system save area. Used
after a system crash or accidental hangup.
Note that the system saves a copy of the file
you were editing only if you have made
changes to the file. If you are using preserve,
you will be notified by mail when a file is
saved.

ex

O

SECTION 1

rewind
rew!

set parameter

shell

source file

Editors

[rew| The argument list is rewound, and the
first file in the list is edited.

Rewinds the argument list discarding any
changes made to the current buffer.

With no arguments, prints those options
whose values have been changed from their
defaults; with parameter all, it prints all of
the option values.

Giving an option name followed by a ‘‘?”’
causes the current value of that option to be
printed. The ““?”’ is unnecessary unless the
option is Boolean valued. Boolean options are
given values either by the form ‘‘set option”
to turn them on or ‘‘set nooption” to turn
them off; string and numeric options are
assigned via the form “‘set option=value’’.

More than one parameter may be given to
set ; parameters are interpreted left-to-right.

[sh] A new Shell is created. When it ter-
minates, editing resumes.

[so] Reads and executes commands from the
specified file. Source commands may be
nested.

(.,.)substitute /pat/repl/ options count flags

ex

[s] On each specified line, the first instance of
pattern pat is replaced by replacement pat-
tern repl. If the global indicator option char-
acter g appears, then all instances are substi-
tuted; if the confirm indication character ¢
appears, then before each substitution the line
to be substituted is typed with the string to
be substituted marked with ‘"’ characters.

By typing a y, you can cause the substitution
to be performed. Any other input results in
no change. After a substitute the current
line is the last line substituted.

Lines may be split by substituting newline
characters into them. The newline in repl
must be escaped by preceding it with a \.
Other metacharacters available in pat and
repl are described below.

2-13

SECTION 1

stop

(.,.)substitute options

(+,.)t addr flags
ta lag

unabbreviate word

undo

2-14

Editors

Suspends the editor, returning control to the
top level Shell. If autowrite is set and there
are unsaved changes, a write is done first
unless the form stop! is used.

count flags

[s] If pat and repl are omitted, then the last
substitution is repeated. This is a synonym
for the & command.

The t command is a synonym for copy.

The focus of editing switches to the location
of tag, switching to a different line in the
current file where it is defined, or if necessary
to another file.

Note: If you have modified the current
file before giving a tag command,
you must write it out; giving
another tag command, specifying
no tag will reuse the previous tag.

The tags file is normally created by a program
such as ctags, and consists of a number of
lines with three fields separated by blanks or
tabs. The first field gives the name of the
tag, the second the name of the file where the
tag resides, and the third gives an addressing
form which can be used by the editor to find
the tag; this field is usually a contextual scan
using *‘/pat/” to be immune to minor changes
in the file. Such scans are always performed
as if nomagic was set. The tag names in the
tags file must be sorted alphabetically.

[una] Delete word from the list of abbrevia-
tions.

[u] Reverses the changes made in the buffer
by the last buffer editing command. Note
that global commands are considered a single
command by undo (as are open and visual.)
Also, the commands write and edit which
interact with the file system cannot be
undone. Undo is its own inverse.

Undo always marks the previous value of the

current line *‘.”” as “““ 7. After an undo the

ex

SECTION 1

unmap lhs

(1,9%$)v /pat/ cmds

version

Editors

current line is the first line restored or the line
before the first line deleted if no lines were
restored. For commands with more global
effect such as global and visual, the current
line regains its pre-command value after an
undo.

The macro expansion associated by map for
lhs is removed.

A synonym for the global command variant
g!, running the specified ¢mds on each line
which does not match pat.

[ve] Prints the current version number of the
editor as well as the date the editor was last
changed.

(.) visual type count flags[vi] Enters visual mode at the specified line.

visual file

(1,9%)write file

ex

[I3R2) [1%aR 2] [13R k)
- .

Type is optional and may be , or

as in the z command to specify the placement
of the specified line on the screen. By default,
if type is omitted, the specified line is placed
as the first on the screen. A count specifies an
initial window size; the default is the value of
the option window. See Chapter 3 of this sec-
tion, An Introduction to Display Editing with
Vi, for more details. To exit this mode, type

Q.

Also visual +n file From visual mode, this
command is the same as edit.

[w] Writes changes made back to file, print-
ing the number of lines and characters writ-
ten. When file is omitted, the text is written
back to the file named when the editor was
originally invoked. If a file is specified, then
text will be written to that file.

Note: The editor writes to a file only if it
is the current file and is edsted, if
the file does not exist, or if the file
is actually a teletype, /dev/tty,
/dev/null. Otherwise, you must
give the variant form w! to force -
the write.

If the file does not exist it is created. The

current file name is changed only if there is
no current file name; the current line is never

2-15

- SECTION 1

(1,8%)write>> file

w! name

(1,%)w lcommand

wq name
wq! name
xit name

(.,.)yank buffer count

(«+1) z count

(.)z type count

2-16

Editors

changed.

If an error occurs while writing the current
and edited file, the editor considers that there
has been ‘“No write since last change’ even if
the buffer had not previously been modified.

[w>>] Writes the buffer contents at the end
of an existing file.

Overrides the checking of the normal write
command, and will write to any file which the
system permits.

Writes the specified lines into command.

Note: The space between w and ! is
important. It’s the only difference
between w!, which overrides
checks and w !, which writes to a
command.

Similar to a write and then a quit com-
mand.

The variant overrides checking on the sensi-
bility of the write command, as w! does.

If any changes have been made and not writ-
ten, xit writes the buffer out, then quits.

[ya] Places the specified lines in the named
buffer, for later retrieval via put. If no buffer
name is specified, the lines go to a more vola-
tile place; see the put command description.

Print the next count lines, default count =
window.

Prints a window of text with the specified line
at the top. If type is ‘—’ the line is placed at
the bottom; a ‘.’ causes the line to be placed
in the center. A count gives the number of
lines to be displayed rather than double the
number specified by the scroll option. On a
CRT, the screen is cleared before display
begins unless count < screen size. The
current line is left at the last line printed.
Note: Forms “z=""and “z"” also exist;
“z="" places the current line in
the center, surrounds it with lines

ex

C

SECTION 1

! command

(addr , addr) ! command

(3)=

(.,.)> count flags
(.,.) < count flags

1Z

(A41,.41)

ex

Editors

of -’ characters and leaves the
current line at this line. The form
“z"”’ prints the window before
“z-" would. The characters “+",
“*” " and “~” may be repeated for
cumulative effect.

The remainder of the line after the ! charac-
ter is sent to a Shell to be executed. Within
the text of command, the characters “%’’ and
“4" are expanded as in filenames and the
character ““!”’ is replaced with the text of the
previous command. Thus, in particular, “!!”
repeats the last such Shell escape. If any such
expansion is performed, the expanded line will
be echoed. The current line is unchanged by
this command. If there has been *[No write]”
of the buffer contents since the last change to
the editing buffer, then a diagnostic will be
printed before the command is executed as a
warning. A single “!”’ is printed when the
command completes.

Takes the specified address range and supplies
it as standard input to command; the output
of command replaces the input lines.

Prints the line number of the addressed line.
The current line is unchanged.

Does an intelligent shift of the specified lines.
(< shifts left and > shifts right). The quan-
tity of shift is determined by the shiftwidth
option and the repetition of the specification
character. Only white space (blanks and
tabs) is shifted; no non-blank characters are
discarded in a left shift. The current line
becomes the last line which changed due to
the shifting.

An end-of-file from a terminal input scrolls
through the file. The scroll option specifies
the size of the scroll, normally a half screen of
text.

An address alone causes the addressed lines to
be printed. A blank line prints the next line
in the file.

2-17

SECTION 1 Editors

(.,.) & options count flags

Repeats the previous substitute command.

(.,.) options count flags

Replaces the previous regular expression with
the previous replacement pattern from a sub-
stitution.

2.10 REGULAR EXPRESSIONS
2.10.1 Regular Expressions

A regular expression specifies a set of strings of characters. A member of
this set of strings is said to be matched by the regular expression. Ex
remembers two previous regular expressions: the previous regular expres-
sion used in a substitute command and the previous regular expression
used elsewhere (referred to as the previous scanning regular expression.)

The previous regular expression can always be referred to by a null re,
e.g.’ “//” or “???’.

2.10.2 Magic and Nomagic

The regular expressions allowed by ex are constructed in one of two ways
depending on the setting of the magic option. The ex and v: default set-
ting of magic gives quick access to a powerful set of regular expression
metacharacters. The disadvantage of magic is that the user must
remember that these metacharacters are magic and precede them with
the character ““\” to use them as “ordinary” characters. With nomagic,
the default for edit, regular expressions are much simpler, there being
only two metacharacters. The power of the other metacharacters is still
available by preceding the (now) ordinary character with a *\"’. Note
that ““\” is thus always a metacharacter.

The remainder of the discussion of regular expressions assumes that the
setting of this option is magic.

Note: To discern what is true with nomagic it suffices to remember
that the only special characters in this case will be ““1” at the
beginning of a regular expression, ‘“‘$’’ at the end of a regular
expression, and ‘““\”. With nomagic the characters **~ ” and
“&" also lose their special meanings related to the replace-
ment pattern of a substitute.

2.10.3 Regular Expression Summary

The following basic constructs are used to construct magic mode regular
expressions.

char An ordinary character matches itself. The characters “1”
at the beginning of a line, ‘‘$’’ at the end of line, “*’’ as

2-18 ex

)

O

SECTION 1 Editors

any character other than the first, “.”, “\”, “[”’, and “~ ”
are not ordinary characters and must be escaped (preceded)

by ““\” to be treated as such.

1 At the beginning of a pattern forces the match to succeed
only at the beginning of a line.

$ - At the end of a regular expression forces the match to
succeed only at the end of the line.

. Matches any single character except the new-line character.

\< Forces the match to occur only at the beginning of a ‘‘vari-

able” or “word’’; that is, either at the beginning of a line,
or just before a letter, digit, or underline and after a char-
acter not one of these.

\> Similar to “\ <", but matching the end of a “variable” or
“word’’, i.e. either the end of the line or before character
which is neither a letter, nor a digit, nor the underline char-
acter.

[string] Matches any (single) character in the class defined by
string. Most characters in string define themselves. A pair
of characters separated by ‘-’ in string defines the set of
characters collating between the specified lower and upper
bounds, thus *“[a-z]”’ as a regular expression matches any
(single) lower-case letter. If the first character of string is
an ‘“‘1” then the construct matches those characters which
it otherwise would not; thus “[fa-z]” matches anything but
a lower-case letter (and of course a newline). To place any
of the characters *“1”’, [, or “~"’ in string you must escape
them with a preceding “\”.

2.10.4 Combining Regular Expression Primitives

The concatenation of two regular expressions matches the leftmost and
then longest string which can be divided with the first piece matching
the first regular expression and the second piece matching the second.
Any of the (single character matching) regular expressions mentioned
above may be followed by the character ‘“*”’ to form a regular expression
which matches any number of adjacent occurrences (including 0) of char-
acters matched by the regular expression it follows.

The tilde (7) character may be used in a regular expression, and matches
the text which defined the replacement part of the last substitute com-
mand. A regular expression may be enclosed between the sequences ““\(”
and ‘““\)” with side effects in the substitute replacement patterns.

2.10.5 Substitute Replacement Patterns

The basic metacharacters for the replacement pattern are “&’ and " ’;
these are given as “\&" and “\” " when nomagic is set. Each instance
of “&” is replaced by the characters which the regular expression

ex 2-19

SECTION 1 Editors

matched. The metacharacter “~ ’’ stands, in the replacement pattern,
for the defining text of the previous replacement pattern.

Other metasequences possible in the replacement pattern are always
introduced by the escaping character ““\”. The sequence ‘“\n" is replaced
by the text matched by the nth regular subexpression enclosed between

\(* and)"

Note: When nested, parenthesized subexpressions are present, n is
determined by counting occurrences of ‘“\(’’ starting from the
left.

The sequences ‘“‘\u” and “\1” cause the following character in the
replacement to be converted to upper- or lower-case respectively if this
character is a letter. The sequences ‘‘\U” and ‘“\L” turn such conversion
on, either until “\E” or ‘“\e” is encountered, or until the end of the
replacement pattern.

2.11 OPTION DESCRIPTIONS

In the following descriptions, the full name of the option (bold type) is
followed by the option’s default value. The abbreviation appears in
brackets. The brackets are not part of the abbreviation.

autoindent noai [ai] Can be used to ease the preparation of
structured program text. At the beginning of
each append, change, or insert command
or when a new line is opened or created by an
‘append, change, insert, or substitute
operation within open or visual mode, ex
looks at the line being appended after, the
first line changed or the line inserted before
and calculates the amount of white space at
the start of the line. Then, it aligns the cur-
sor at the level of indentation so determined.

If you type lines of text, they will continue to
be justified at the displayed indenting level.
If more white space is typed at the beginning
of a line, the following line will start aligned
with the first non-white character of the pre-
vious line. To back the cursor up to the
preceding tab stop, hit {D. The tab stops
going backwards are defined at multiples of
the shiftwidth option. You cannot backspace
over the indent, except by sending an end-of-
file with a 1Z.

A line with no characters added to it turns

2-20 ex

SECTION 1

autoprint ap

autowrite noaw

beautify nobeautify

directory dir=/tmp

Editors

into a completely blank line (the white space
provided for the autoindent is discarded.)
Lines beginning with an ‘1’ and immediately
followed by a 1D cause the input to be reposi-
tioned at the beginning of the line, but retain
the previous indent for the next line. Simi-
larly, a ‘0’ followed by a D repositions at
the beginning but without retaining the previ-
ous indent.

Autoindent doesn’t happen in global com-
mands or when the input is not a terminal.

[ap] Causes the current line to be printed
after each delete, copy, join, move, substi-
tute, t, undo or shift command. This has
the same effect as supplying a trailing p to
each such command. Autoprint is
suppressed in globals, and only applies to the
last of many commands on a line.

[aw] Causes the contents of the buffer to be
written to the current file if you have
modified it and gives a next, rewind, stop,
tag, or ! command, or a “*1” (switch files)
or “"]” (tag goto) command in visual.

Note: The edit and ex commands do
not autowrite. In each case, there
is an equivalent way of switching
when autowrite is set to avoid the
autowrite.

[bf] Causes all control characters except tab,
newline, and form-feed to be discarded from
the input. A complaint is registered the first
time a backspace character is discarded.
Beautify does not apply to command input.

[dir] Specifies the directory in which ex places
its buffer file. If this directory in not writ-
able, then the editor will exit abruptly when
it is unable to create its buffer there.

edcompatible noedcompatible

ex

Causes the presence or absence of g and ¢
suffixes on substitute commands to be remem-
bered, and to be toggled by repeating the
suffixes. The suffix r makes the substitution

2-21

SECTION 1

errorbells noed

hardtabs ht=S8

ignorecase noic

lisp nolisp

list nolist

magic magic

mesg mesg
number nonumber

open open

2-22

Editors

be as in the © command, instead of like &.

[eb] Error messages are preceded by a bell.

Note: Bell ringing in open and visual on
errors is not suppressed by setting
noeb.

If possible, the editor places the error message
in a standout mode of the terminal (such as
inverse video) instead of ringing the bell.

[ht] Gives the boundaries on which terminal
hardware tabs are set (or on which the system
expands tabs).

[ic] All upper-case characters in the text are
mapped to lower-case in regular expression
matching. In addition, all upper case charac-
ters in regular expressions are mapped to
lower case except in character class
specifications.

Autoindent indents appropriately for LISP
code, and the () { } [[and]] commands in
open and visual are modified to have mean-
ing for LISP.

All printed lines are displayed showing tabs
and end-of-lines as in the list command.

If nomagic is set, the number of regular
expression metacharacters is greatly reduced,
with only “*” and “$” having special effects.
In addition, the metacharacters *“~ ”’ and “&"
of the replacement pattern are treated as nor-
mal characters. All the normal metacharac-
ters may be made magic when nomagic is
set by escaping them with a backslash (*\’).

If nomesg is set, it inhibits other users from
doing a write to your terminal while you are
in visual mode.

[nu] Causes all output lines to be numbered.
In addition, each input line will be prompted
for its line number.

If noopen, the commands open and visual
are not permitted. This is set for edit to
prevent confusion resulting from accidental
entry to open or visual mode.

ex

O

SECTION 1

optimize optimize

Editors

[opt] Throughput of text is expedited by set-
ting the terminal to not do automatic carriage
returns when printing more than one (logical)
line of output, greatly speeding output on ter-
minals without addressable cursors when text
with leading white space is printed.

paragraphs para=IPLPPPQPP LIbp

prompt prompt

redraw noredraw

remap remap

report report=>5

scroll scroll=1/2 window

[para] Specifies the paragraphs for the { and
} operations in open and visual. The pairs
of characters in the option’s value are the
names of the macros used to start paragraphs.

Command mode input is prompted for with a

TR 1]
. .

The editor simulates an intelligent terminal
on a dumb terminal (e.g. during insertions in
visual the characters to the right of the cur-
sor position are refreshed as each input char-
acter is typed.) Useful only at very high
speed.

If on, macros are repeatedly tried until they

are unchanged. For example, if o is mapped
to O, and O is mapped to I, then if remap is
set, o will map to I, but if noremap is set, it

will map to O.

Specifies a threshold for feedback from com-
mands. Any command which modifies more
than the specified number of lines will provide
feedback as to the scope of its changes. For
commands such as global, open, undo, and
visual which have potentially more far reach-
ing scope, the net change in the number of
lines in the buffer is presented at the end of
the command, subject to this same threshold.
Thus, during a global operation, notification
on the individual commands performed is
suppressed.

Determines the number of logical lines
scrolled when an end-of-file is received from a
terminal input in command mode, and the
number of lines printed by a command mode
z command (double the value of scroll).

sections sections=SHNHH HU

. ex

Specifies the section macros for the [[and]]

2-23

SECTION 1

Eﬁitors

operations in open and visual. The pairs of
characters in the option’s value are the names
of the macros which start paragraphs.

shell SHELL or sh=/bin/sh

shiftwidth sw=8

showmatch nosm

slowopen

tabstop ts=8

taglength t1=0

tags

term

terse noterse

warn warn

2-24

[sh] Gives the path name of the Shell used
by the Shell escape ! and by the shell com-
mand. The default is taken from the environ-
ment variable SHELL if present.

[sw] Gives the width of a software tab stop,
used in reverse tabbing with {D when using
autoindent to append text, and by the shift
commands. '

open and visual mode, when a) or } is
typed, move the cursor to the matching (or {
for one second if this matching character is on
the screen. Extremely useful with LISP.

[slow] Affects the display algorithm used in
visual mode, holding off display updating
during input of new text to improve
throughput when the terminal in use is both
slow and unintelligent. See Chapter 3 of this
section, An Introduction to Display Editing
with vi for more details.

[ts] The editor expands tabs in the input file
to be on tabstop boundaries for the purposes
of display.

[t]] Tags are not significant beyond this
many characters. A value of zero (the
default) means that all characters are
significant.

A path of files to be used as tag files for the
tag command. A requested tag is searched
for in the specified files, sequentially. By
default, files .tags and /usr/lib/tags are
searched for.

The terminal type of the output device.
Defaults to environment variable TERM if
set.

Use shorter error diagnostics.

Warn if there has been ‘‘[No write since last
change]” before a *“!” command escape.

ex

—_

S

O

O

SECTION 1

window

wrapscan ws

wrapmargin wm=0

writeany nowa

2.12 LIMITATIONS

Editors

The number of lines in a text window in the
visual command. The default is 8 at slow
speeds (600 baud or less), 16 at medium speed
(1200 baud), and the full screen (minus one
line) at higher speeds.

Note: The ‘“commands’ w300, w1200,
and w9600 are not true options
but set window only if the speed
is slow (300), medium (1200), or
high (9600), respectively. They
are suitable for an EXINIT and
make it easy to change the
8/16/full screen rule.

[ws] Searches using the regular expressions in

addressing will wrap around past the end of
the file.

[wm]| Defines a margin for automatic wrap-
over of text during input in open and visual
modes.

[wa] Inhibits the checks normally made
before write commands, allowing a write to
any file to which you have access.

Editor limits you are likely to encounter are:

e 1024 characters per line,

e 256 characters per global command list,

e 128 characters per file name,

e 128 characters in the previous inserted and deleted text in open or

visual,

e 100 characters in a Shell escape command,

e 63 characters in a string valued option,

e 30 characters in a tag name, and

e a limit of 250000 lines in the file is silently enforced.

The visual implementation limits the number of macros defined with
map to 32, and the total number of characters in macros to be less than

512.

ex

2-25

N

N

O

SECTION 1 Editors

Chapter 3: An Introduction to Display Editing With vi

3.1 INTRODUCTION

Vi (visual) is a display-oriented interactive text editor. On DOMAIN sys-
tems, the shell window in which you invoke vi becomes a VT100 Emula-
tor. The ‘“‘screen’ of this ‘“terminal” acts as a window into the file that
you are editing. Changes that you make to the file are reflected in what
you see.

Vi lets you insert new text at any place in the file. Most of the com-
mands to vi move the cursor around in the file. There are commands to
move the cursor forward and backward in units of characters, words,
lines, sentences and paragraphs. A small set of operators, like d for
delete and ¢ for change, combine with the motion commands to perform
operations such as ‘““delete word” or ‘‘change paragraph.’” This regularity
and the mnemonic assignment of commands to keys makes the vi com-
mand set easy to remember and to use.

Vi works on a large number of display terminals, as well as on DOMAIN
nodes. While it is advantageous to have an intelligent terminal which
can locally insert and delete lines and characters from the display, vi also
works well on dumb terminals that communicate over slow phone lines.
The editor makes allowance for the low bandwidth in these situations
and uses smaller window sizes and different display updating algorithms
to make best use of the limited speed available.

It is also possible to use the vi command set and a one-line editing win-
dow on hardcopy terminals, storage tubes and “‘glass tty’s.” The full

command set of the more traditional, line-oriented editor ez is available
within vi; it is quite simple to switch between the two modes of editing.

This chapter is based on the original Introduction to vi, written at the
University of California at Berkeley.

3.2 GETTING STARTED

This chapter provides a quick introduction to vi. (Pronounced vee-eye.)
As you read this, run vi on a non-critical file with which you are fami-
liar. In the first part of this chapter, we describe the fundamentals of
using vi. Topics of less universal interest are presented in later sections.

This chapter includes a section that presents the special meanings that
various keyboard characters have for vi.

SECTION 1 Editors

3.2.1 Notational Conventions

In the examples we present, input that must be typed ‘‘as-is”’ will be set
in bold type. Text which should be replaced with appropriate input
will be given in Italics. We will represent special characters and keyboard
keys in SMALL CAPITALS.

3.2.2 Vi and the VT100 Emulator Program

When run on a DOMAIN node, vi automatically invokes the /com/vt100
terminal emulation program. This program performs two major func-
tions:

e It remaps the keyboard so that all VT100 function keys (including
ESC and RUB) are supported.

e It “borrows” the shell window and, using graphics primitives, mimics
the behavior of a VT132 terminal. (A VT132 is a VT100 with
insert/delete character and insert/delete line capabilities.)

e It allows vi to communicate with this ‘‘terminal” using normal escape
sequences. The termcap entry for an apollo_19! terminal is nearly the
same as the one for a vi132.

While a real VT132 can only display 24 lines of 80 columns, the emulator
will use as many lines and columns as will fit into the window in which it
was invoked. If you need to use vi, we recommend that you first invoke

a UNIX shell in a window of a convenient size, then dedicate that window
to running vi.

3.2.3 Keyboard Mapping

The table below shows how the keys on a DOMAIN keyboard map to the
keys of a VT100. This key mapping is only in effect when the cursor is
in a window running vi or the vt100 program.

Note: Key definitions marked with a t are for the 880 (high-profile)
keyboard only.

®

)

SECTION 1

3.2.4 Specifying Terminal Type

DOMAIN keyboard key | VT100 keypad

<ESC>

<INS MODE >+

<CHAR DEL >

<F2>
<F3>
<F4>
<F5>

<SHIFT/F2>
<SHIFT/F3>
<SHIFT/F4>
<SHIFT/F5>

<CTRL/F2>
<CTRL/F3>
<CTRL/F4>
<CTRL/F5>
<F6>

<F7>

SHIFT/<F6>

SHIFT/<F7>
CTRL/<F6>
CTRL/<F7>

Editors

Note: If you only run vi on a DOMAIN node (if you never use a

dumb terminal), you may skip this section.

If you are using a terminal conencted to the DOMAIN system via

hardwired or phone lines, you must tell the system what kind of terminal
you are using before you invoke vi. Here is a partial list of terminal type
codes. If your terminal does not appear here, see your System Adminis-

trator.

SECTION 1

Editors

)

C

Code Full name Type
2621 Hewlett-Packard 2621A/P
2645 Hewlett-Packard 264x
actd Microterm ACT-IV
actd Microterm ACT-V
adm3a Lear Siegler ADM-3a
adm31 Lear Siegler ADM-31
c100 Human Design Concept 100
dm1520 Datamedia 1520
dm2500 Datamedia 2500
dm3025 Datamedia 3025

fox Perkin-Elmer Fox
h1500 Hazeltine 1500
h19 Heathkit h19

1100 Infoton 100
mime Imitating a smart act4 Intelligent
t1061 Teleray 1061
vt52 Dec VT52

Suppose, for example, that you have a Hewlett-Packard HP2621A termi-
nal. The code used by the system for this terminal is *2621’. To tell
the system that you are using a 2621, use one of the following UNIX com-
mands. In the C-Shell, say:

% setenv TERM 2621

If you are using a Bourne shell, type the commands:

$ TERM=2621
$ export TERM

If you want to arrange to have the terminal type set automatically when
you log in, use the tset program. For example, if you dial in on a VT52,
terminal, but also use a DOMAIN node at work, a typical line for your
login file (if you use the C-Shell) would be

setenv TERM ° tset — —d vt52°
or for your .profile file (if you use the Bourne Shell)
TERM="tset — -d vt52"

Tset knows when you are using a node, and needs only to be told that
when you dial in, it will be talking to a VT52. Usually, tset is used to
change the erase and kill characters, too.

3.2.5 Editing a File

“After telling the system what kind of terminal you have, make a copy of
a familiar file — one that is not too long — and run vi on this file, giving
the command

% vi name

where name is the name of the copy file you just created. When you do
this, the window will clear and the text of your file will appear in it.

3-4 vi

)

s

O

SECTION 1 Editors

Note: If you gave the system an incorrect terminal type code, then
the editor may make a mess out of your screen. This happens
when it sends control codes for one kind of terminal to some
other kind of terminal. If this happens, hit the keys :q (colon
and the q key) and then hit the RETURN key. This should get
you back to the shell. Another possibility (if you don’t see
your file) is that you typed the wrong file name and vi has
printed an error diagnostic. In this case, you should follow
the above procedure for getting back to the Shell, then re-try
the procedure. If the vi doesn’t seem to respond to the com-
mands which you type here, try sending an interrupt to it by
typing 11, and then hitting the :q command again followed by
a carriage return.

3.2.6 The Buffer

The editor does not directly modify the file which you are editing.
Rather, the editor makes a copy of this file, in a place called the buffer,
and remembers the file’s name. You do not affect the contents of the file
unless and until you write the changes you make back into the original

file.
3.2.7 View

If you want to use the editor to look at a file, rather than to make
changes in it, invoke it as view instead of vi. This will set the readonly
option which will prevent you from accidentally overwriting the file.

3.2.8 Arrow Keys

Vi supports the cursor positioning keys of most terminals. Whether or
not you have cursor positioning keys, you can use the h, j, k, and 1 keys
as cursor positioning keys.

Note: If you are using an HP2621 terminal, the function keys must
be shifted to be read by vi, otherwise, they only act locally.
Unshifted use will leave the cursor positioned incorrectly.

The h key command moves the cursor to the left (like Th — the back-
space), j moves down (in the same column), k moves up (in the same
column), and | moves to the right.

3.2.9 Special Characters: ESC, RETURN and DEL

Look on your keyboard for a key labelled ESC or (if you're using a termi-
nal) ALT. On DOMAIN low-profile keyboards, ESC is near the upper left
corner of the character key area. On DOMAIN 880 keyboards, ESC is
mapped to INS MODE when vi is running. Try hitting this key a few
times. The editor will beep to indicate that it is in a quiescent state.

Note: On some terminals, vi will quietly flash the screen rather than
ringing the bell.

vi 3-5

SECTION 1 Editors

Partially formed commands are cancelled by ESC, and when you insert
text in the file, you end the text insertion with ESC. This key is a fairly
harmless one to hit, so you can just hit it if you don’t know what is
going on until the editor rings the bell.

The RETURN key is important because it is used to terminate certain
commands. On all DOMAIN keyboards (as well as on most terminals),
RETURN is located at the right side of the keyboard, and is the same key
used to terminate shell commands.

Another very useful key is the DEL or RUB key, which generates an inter-
rupt, telling the editor to stop what it is doing.

Note: On DOMAIN nodes, the interrupt function is mapped to {I by
the uniz_keys key definition file.

It is a forceful way of making the editor listen to you, or to return it to
the quiescent state if you don’t know or don’t like what is going on. Try
hitting the */’" key on your terminal. This key is used when you want
to specify a string to be searched for. The cursor should now be posi-
tioned after a */” prompt at the bottom line of the window. You can
get the cursor back to the current position by hitting the DEL or RUB
key; try this now.

Note: Backspacing over the */” will also cancel the search.

From now on we will simply refer to hitting the I (or DEL or RUB) key as
“sending an interrupt.”

The editor often echoes your commands on the bottom line of the win-
dow. If the cursor is on the first position of this last line, then the editor
is performing a computation, such as computing a new position in the file
after a search or running a command to reformat part of the buffer.
When this is happening, you can stop the editor by sending an interrupt.

3.2.10 Getting Out of the Editor

After you have worked with this introduction for a while, and you wish
to do something else, you can give the command ZZ to the editor. This
will write the contents of the editor’s buffer back into the file you are
editing (if you made any changes), then quit vi. You can also end an
editor session by giving the command :q!RETURN.

Note: All commands which read from the last display line can also
be terminated with an ESC as well as a RETURN.

The :q! command ends the editor session and discards all the changes
you've made since your last write (i.e., :w). You may need to use this
command if, for example, you change the editor’s copy of a file you
wished only to view. Don’t give this command when you really want to

3-6 vi

)

SECTION 1 Editors

save the changes you have made.

3.3 MOVING AROUND IN THE FILE
3.3.1 Scrolling and Paging

The most useful of the many scroll/page commands is generated by hit-
ting the CTRL (Control) and D keys at the same time, a control-D or
“tD’. From now on, we will use this two-character notation when refer-
ring to control sequences. You may have a key labelled “**’ on your ter-
minal. This key will be represented as *“*’’ in this book. The ‘1"’ nota-
tion will be used only as part of the “1X’’ notation for control characters.

As you know now if you tried hitting 1D, this command scrolls down in
the file. The D thus stands for down. For instance the command to
scroll up is {U. Many dumb terminals can’t scroll up at all, in which
case hitting U clears the screen and refreshes it with a line which is
farther back in the file at the top.

If you want to see more of the file below where you are, you can hit {E
to expose one more line at the bottom of the screen, leaving the cursor
where it is. The command 1Y (which is hopelessly non-mnemonic, but
next to {U on the keyboard) exposes one more line at the top of the
screen.

There are other ways to move around in the file; the keys 1F and tB
move forward and backward a page, keeping a couple of lines of con-
tinuity between screens so that it is possible to read through a file using
these rather than 1D and {U if you wish.

Notice the difference between scrolling and paging. If you are trying to
read the text in a file, hitting {F to move forward a page does not allow
you to view lines that were on the previous page. Scrolling, on the other
hand, leaves previous lines visible. You can continue to read the text as
scrolling is taking place.

3.3.2 Searching, Goto, and Previous Context

Another way to position the cursor in the file is by giving the editor a
string to search for. Type the character / followed by a string of charac-
ters terminated by RETURN. The editor will position the cursor at the
next occurrence of this string. Try hitting n to then go to the next
occurrence of this string. The character ? will make vi search backwards
from where you are, and is otherwise like /.

Note: These searches will normally wrap around the end of the file,
and thus find the string even if it is not on a line in the direc-
tion of your search, provided it is somewhere in the file. You
can disable this wraparound in scans by giving the command
:se nowrapscanRETURN, or its abbreviation :se nowsRE-
TURN.

vi i 3-7

SECTION 1 Editors

If the search string you give the editor is not present in the file, the edi-
tor will print a message in the last line of the window, and the cursor will
be returned to its initial position. '

If you wish the search to match only at the beginning of a line, begin the
search string with a *. To match only at the end of a line, end the
search string with a §. Thus /“searchRETURN will search for the word
“search” at the beginning of a line, and /last$RETURN searches for the
word ‘‘last” at the end of a line.

Note: Vi can search for a string that is a regular expression in the
sense of the editors ex(1) and ed(1). If you don’t wish to
learn about this yet, you can disable this more general facility
by doing :se nomagicRETURN; by putting this command in
EXINIT in your environment, you can have this always be in
effect (more about EXINIT later.)

The command G, when preceded by a number will position the cursor at
that line in the file. Thus 1G will move the cursor to the first line of the
file. If you give G no count, then it moves to the end of the file.

If, because you are near the end of the file, there are unused lines on the
screen, the editor will place only the character ““~ ” on those lines that
are past the end of the file.

You can find out the state of the file you are editing by typing a 1G.
The editor will show you the name of the file you are editing, the number
of the current line, the number of lines in the buffer, and how far (in per-
centage of characters) you have moved through the buffer. Try doing
this now, and remember the number of the line you are on. Give a G
command to get to the end and then another G command to get back
where you were.

You can also get back to a previous position by using the command **
(two back quotes). This is often more convenient than G because it
requires no advance preparation. Try giving a G or a search with / or ?
and then a ** to get back to where you were. If you accidentally hit n
or any command which moves you far away from a context of interest,
you can quickly get back by hitting **°

3.3.3 Moving Around on the Screen

Now try just moving the cursor around on the screen. If your terminal
has arrow keys, try them and convince yourself that they work. If you
don’t have working arrow keys, you can always use h, j, k, and 1.
Experienced users of vi prefer using these keys since, unlike arrow keys,
they don’t require you to move your hand away from the character keys
on the keyboard.

Hit the 4 key. Each time you do, notice that the cursor advances to the
next line in the file, at the first nonblank position on the line. The — key
is like + but goes the other way.

3-8 vi

7N

e

SECTION 1 Editors

These are very common keys for moving up and down lines in the file.
Notice that if you go off the bottom or top with these keys, then the
screen will scroll as necessary to bring a line at a time into view. The
RETURN key has the same effect as the 4 key.

Vi also has commands to take you to the top, middle and bottom of the
screen. H will take you to the top (home) line on the screen. Try
preceding it with a number as in 3H. This will take you to the third line
on the screen. Many vi commands take these preceding numbers, also
called counts. Try M, which takes you to the middle line on the screen,
and L, which takes you to the last line on the screen. L also takes a
count, thus 5L will take you to the fifth line from the bottom.

3.3.4 Moving Within a Line

Now try picking a word on some line on the screen (not the first word on
the line). Using RETURN and —, move the cursor to the line the word is
in. Hit the w key. This advances the cursor to the next word on the
line. Now hit the b key to back up, by words, in the line. Also try the e
key which advances you to the end of the current word rather than to
the beginning of the next word. Also try SPACE (the space bar) which
moves right one character and the BS (backspace or 1H) key which moves
left one character. The key h works as TH does and is useful if you
don’t have a BS key. (Also, as noted just above, 1 will move to the right.)

If the line had any punctuation, you may have noticed that the w and b
keys stopped at each group of punctuation. You can also go backwards
and forwards words without stopping at punctuation by using W and B
rather than the lower case equivalents. Think of these as bigger words.
Try these on a few lines with punctuation to see how they differ from the
lower case w and b. '

These ‘“word”’ movement keys wrap around the end of line, rather than
stopping at the end. Try moving to a word on a line below where you
are by repeatedly hitting w.

vi 3-9

SECTION 1 | Editors

3.3.5 Summary of Cursor Movement and Scrolling

SPACE advance the cursor one position

1B backwards to previous page

1D scrolls down in the file

1B exposes another line at the bottom
1tF forward to next page

1G tell what is going on

TH backspace the cursor

TN next line, same column

1P previous line, same column

1U scrolls up in the file

1Y exposes another line at the top

+ next line, at the beginning

- previous line, at the beginning

/ scan for a following string forwards
? scan backwards

B back a word, ignoring punctuation
G go to specified line, last default

H home screen line

M middle screen line

L last screen line

W forward a word, ignoring punctuation
b back a word

e end of current word

n scan for next instance of / or ? pattern
w word after this word

3.4 MAKING SIMPLE CHANGES
3.4.1 Inserting

One of the most useful commands is the i (insert) command. After you
type i, everything you type until you hit ESC is inserted into the file.

Try this now; position yourself to some word in the file and try inserting
text before this word. If you are using a dumb terminal, it will seem, for
a minute, that some of the characters in your line have been overwritten,
but they will reappear when you hit ESC.

Now find a singular noun that can be made plural by the addition of a
final “s” Position the curso at this word and type e (move to end of
word), then a for append and then “sESC” to terminate the textual
insert.

Try inserting and appending a few times to make sure you understand
how this works; i placing text to the left of the cursor, a to the right.

It is often the case that you want to add new lines to the file you are
editing, before or after some specific line in the file. Find a line where
this makes sense and then give the command o to create a new line after
the line you are on, or the command O to create a new line before the
line you are on. After you create a new line in this way, all text you
type up to an ESC is inserted on the new line.

3-10 vi

/_—\l
J

/
i
\

O

SECTION 1 Editors

Many related editor commands are invoked by the same letter key and
differ only in that one is given by a lower case key and the other is given
by an upper case key. Where this is true, the upper case key often
differs from the lower case key in its sense of direction, with the upper
case key working backward and/or up, while the lower case key moves
forward and/or down.

If you need to type in more than one line of text, hit a RETURN at the
end of any line you are typing. A new line will be created for text, and
you can continue to type. On some terminals, vi editor may choose to
wait before redrawing the lower portion of the screen. This will make it
appear as though you are typing over existing screen lines, but it avoids
the lengthy delay which would occur if the editor attempted to keep the
tail of the screen always up to date. The tail of the screen will be fixed
up, and the ‘“overwritten’ lines will reappear, when you hit ESC.

While you are inserting new text, you can use the characters you nor-
mally use at the system command level (usually t1H or #) to backspace
over the last character which you typed, and the character which you use
to kill input lines (usually @, 1X, or 1U) to erase the input you have
typed on the current line.

Note: The character 1H (backspace) always works to erase the last
input character here, regardless of what your erase character
is.

The character W will erase a whole word and leave the cursor after the
space following the previous word; it is useful for quickly backing up in
an insert.

Notice that when you backspace during an insertion, the characters you
backspace over are not erased; the cursor moves backwards, and the
characters remain on the display. This may be useful if you are planning
to type in something similar to what’s already there. In any case, the
characters disappear when when you hit ESC; if you want to get rid of
them immediately, hit an ESC and then a again.

Notice, also, that you can’t erase characters which you didn’t insert, and
that you can’t backspace around the end of a line. If you need to back
up to the previous line to make a correction, just hit ESC and move the
cursor back to the previous line. After making the correction, you can
return to where you were and use the insert or append command again.

3.4.2 Making Small Corrections

To make small corrections in existing text, use the arrow keys, word-
length motion commands, backspace (the BACK SPACE key, 1H, or even
just h), or SPACE bar to move the cursor to the incorrect character. If
the character is not needed then hit the x key; this deletes the character
from the file. It is analogous to the way you x out characters when you
make mistakes on a typewriter.

vi 3-11

SECTION 1 Editors

If the character is incorrect, you can replace it with the correct character (
by giving the command rc¢, where ¢ is replaced by the correct character.
Finally, if the character which is incorrect should be replaced by more
than one character, use the s command. This substitutes a string of
characters, ending with ESC, for the character under the cursor. If there
are a small number of characters that are wrong, precede s with a count
of the number of characters to be replaced. Counts are also useful with
x to specify the number of characters to be deleted.

3.4.3 More Corrections: Operators

You already know almost enough to make changes at a higher level. All

you need to know now is that the d key acts as a delete operator. Try

the command dw to delete a word. Try hitting . (dot) a few times.

Notice that this repeats the effect of the dw. The command ““.” repeats

the last command which made a change. (\\

Now try db. This deletes a word backwards (it deletes the preceding
word). Try dSPACE. This deletes a single character, and is equivalent to
the x command.

Another very useful operator is ¢ or change. The command c¢w thus
changes the text of a single word. You follow it by the replacement text
ending with an ESC. Find a word which you can change to another, and
try this now. Notice that the end of the text to be changed was marked
with the character “$” so that you can see this as you are typing in the
new material.

VR

3.4.4 Operating on Lines

It is often the case that you want to operate on entire lines. Find a line
which you want to delete, and type dd, the d operator twice. This will
delete the line. If you are on a dumb terminal, the editor may just erase
the line on the screen, replacing it with a line with only an @ on it. This
line does not correspond to any line in your file, but only acts as a place
holder. It helps to avoid a lengthy redraw of the rest of the screen which
would be necessary to close up the hole created by the deletion on a ter- -
minal without a delete line capability.

N
)

Try repeating the ¢ operator twice; this will change a whole line, erasing
its previous contents and replacing them with text you type up to an
ESC.

Note: The command S is a convenient synonym for cc, by analogy
with s. Think of S as a substitute on lines, while s is a sub-
stitute on characters.

You can delete or change more than one line by preceding the dd or cc

with a count, i.e. 5dd deletes 5 lines. You can also give a command like

dL to delete all the lines up to and including the last line on the screen,

or d3L to delete through the third line from the bottom. C ™

3-12 vi

SECTION 1 ' Editors

Note: Using the / search after a d will normally delete characters
from the current position to the point of the match. If you
want to delete whole lines including the two points, give the
pattern as /pat/+0, a line address.

Notice that the editor lets you know when you change a large number of
lines so that you can see the extent of the change. The editor will also
always tell you when a change you make affects text which you cannot
see.

3.4.5 Undo

Now suppose that the last change which you made was incorrect; you
could use the insert, delete and append commands to put the correct
material back. However, since it is often the case that we regret a change
or make a change incorrectly, the editor provides a u (undo) command to
reverse the last change which you made. Try this a few times, and give
it twice in a row to notice that an u also undoes a u.

The undo command lets you reverse only a single change. After you
make a number of changes to a line, you may decide that you would
rather have the original state of the line back. The U command restores
the current line to the state before you started changing it.

You can recover text which you delete, even if undo will not bring it
back; see the section on recovering lost text below.

3.4.6 Summary of Insert/Delete Functions

SPACE advance the cursor one position

tH backspace the cursor

W erase a word during an insert

erase your erase (usually tH or #), erases a character during an insert
kill your kill (usually @, 1X, or {U), kills the insert on this line
. repeats the changing command

0] opens and inputs new lines, above the current

U undoes the changes you made to the current line

a appends text after the cursor

c changes the object you specify to the following text

d deletes the object you specify

i inserts text before the cursor

o opens and inputs new lines, below the current

u undoes the last change

3.5 MOVING, REARRANGING, AND DUPLICATING TEXT
3.5.1 Low Level Character Motions

Move the cursor to a line that includes a parenthesis, comma, or period.
Try the command fz where z is this character. This command finds the
next z character to the right of the cursor in the current line. Try then
hitting a ;, which finds the next instance of the same character. By using
the f command and then a sequence of j’s you can often get to a

vi 3-13

SECTION 1 Editors

particular place in a line much faster than with a sequence of word
motions or SPACEs. There is also a F command, which is like f, but
searches backward. The ; command repeats F also.

When you are operating on the text in a line, it is often desirable to deal
with the characters up to, but not including, the first instance of a char-
acter. Try dfz for some = now and notice that the z character is deleted.
Undo this with u and then try dtz; the t here stands for to, i.e., delete
up to the next z, but not the 2. The command T is the reverse of t.

When working with the text of a single line, an { moves the cursor to the
first non-white position on the line, and a $ moves it to the end of the
line. Thus $a will append new text at the end of the current line.

Your file may have tab ({I) characters in it. These characters are
represented as a number of spaces expanding to a tab stop, where tab
stops are every 8 positions.

Note: This is settable by a command of the form :se ts=z, where z
is 4 to set tabstops every four columns. This has effect on the
screen representation within the editor.

When the cursor is at a tab, it sits on the last of the several spaces which
represent that tab. Try moving the cursor back and forth over tabs so
you understand how this works.

On rare occasions, your file may include nonprinting characters. These
characters are displayed in the same way they are represented in this
document, that is with a two character code, the first character of which
is ““1’. On the screen, non-printing characters resemble one “1”’ charac-
ter adjacent to another, but spacing or backspacing over the character
will reveal that the two characters are, like the spaces representing a tab
character, a single character.

The editor sometimes discards control characters, depending on the char-
acter and the setting of the beautify option, if you attempt to insert
them in your file. You can get a control character in the file by begin-
ning an insert and then typing a 1V before the control character. The

1TV quotes the following character, causing it to be inserted directly into
the file.

3.5.2 Higher-Level Text Objects

In editing a document, it is often advantageous to work in terms of sen-
tences, paragraphs, and sections. The operations (and) move to the
beginning of the previous and next sentences, respectively. Thus the
command d) will delete the rest of the current sentence; likewise d(will
delete the previous sentence if you are at the beginning of the current
sentence, or the current sentence up to where you are if you are not at
the beginning of the current sentence.

3-14 vi

N

4

SECTION 1 Editors

A sentence is defined to end at a ““.’, *“!"” or ‘?”’ which is followed by
either the end of a line, or by two spaces. Any number of closing *)’, *]’,
“»” and “’”’ characters may appear after the ., !’ or “?” before the

spaces or end of line.

The operations { and } move over paragraphs and the operations [[and
]] move over sections.

Note: The [[and]] operations require the operation character to be
doubled because they can move the cursor far from where it
currently is. While it is easy to get back with the command
* %, these commands would still be frustrating if they were
easy to hit accidentally.

A paragraph begins after each empty line, and also at each of a set of
paragraph macros, specified by the pairs of characters in the definition of
the string valued option paragraphs. The default setting for this
option defines the paragraph macros of the -ms and -mm macro pack-
ages, i.e. the ‘“.IP”, “.LP”, “.PP” and “.QP”, “.P” and “.LI"" macros.

Note: You can easily change or extend this set of macros by assign-
ing a different string to the paragraphs option in your
EXINIT. The “.bp” troff request is also assumed to indicate
the start of a paragraph.

Each paragraph boundary is also a sentence boundary. The sentence and
paragraph commands, if given counts, can operate over groups of sen-
tences and paragraphs.

Sections in the editor begin after each macro in the sections option, nor-
mally “.NH’, ‘.SH’, ““*.H” and “.HU’, and each line with a formfeed 1L in
the first column. Section boundaries are always line and paragraph
boundaries also.

Try experimenting with the sentence and paragraph commands until you
are sure how they work. If you have a large document, try looking
through it using the section commands. The section commands interpret
a preceding count as a different window size in which to redraw the
screen at the new location, and this window size is the base size for
newly drawn windows until another size is specified. This is very useful
if you are on a slow terminal and are looking for a particular section.
You can give the first section command a small count to then see each
successive section heading in a small window.

3.5.3 Rearranging and Duplicating Text

The editor has a single unnamed buffer where the last deleted or changed
text is saved, and a set of named buffers a~z which you can use to save
copies of text and to move text around in your file and between files.

vi 3-15

SECTION 1 Editors

The operator y yanks a copy of the object which follows into the
unnamed buffer. If preceded by a buffer name, "z y, where z here is
replaced by a letter a—z, it places the text in the named buffer. The text
can then be put back in the file with the commands p and P; p puts the
text after or below the cursor, while P puts the text before or above the
cursor. ‘

If the text that you yank forms a part of a line or is an object (e.g., a
sentence) which partially spans more than one line, the object will be
placed after the cursor by p and before it if you use P. If the yanked
text forms whole lines, they will be put back as whole lines, without
changing the current line. In this case, the put acts much like a o or O
command.

Try the command YP. This makes a copy of the current line and leaves
you on this copy, which is placed before the current line. The command
Y is a convenient abbreviation for yy. The command Yp will also make
a copy of the current line, and place it after the current line. You can
give Y a count of lines to yank, and thus duplicate several lines; try
3YP.

To move text within the buffer, you need to delete it in one place and
put it back in another. You can precede a delete operation by the name
of a buffer in which the text is to be stored as in "a5dd deleting 5 lines
into the named buffer a. You can then move the cursor to the eventual
resting place of the these lines and do a "ap or ”aP to put them back.
In fact, you can switch and edit another file before you put the lines
back, by giving a command of the form :enameRETURN where name is
the name of the other file you want to edit. You will have to write back
the contents of the current editor buffer (or discard them) if you have
made changes before the editor will let you switch to the other file. An
ordinary delete command saves the text in the unnamed buffer, so that
an ordinary put can move it elsewhere. However, the unnamed buffer is
lost when you change files, so to move text from one file to another you
should use an unnamed buffer.

3-16 vi

)

C

O

O

SECTION 1 Editors
3.5.4 Summary of Higher-Level Motions and Objects

t first non-white on line

$ end of line

) forward sentence

} forward paragraph

1] forward section

(backward sentence

{ backward paragraph

[backward section

fz find z forward in line

P put text back, after cursor or below current line
y yank operator, for copies and moves

tz up to z forward, for operators

Fzf backward in line

P put text back, before cursor or above current line
Tzt backward in line

3.6 HIGH LEVEL COMMANDS
3.8.1 Writing, Quitting, Editing New Files

So far we have seen how to enter vi and to write out our file using either
Z7Z or :wRETURN. The first exits from the editor, (writing if changes
were made), the second writes and stays in the editor.

If you have changed the editor’s copy of the file but haven’t written the
changes with :w, and you don’t wish to save the changes, perhaps
because you made some major mistakes while editing, or because you
decided that the changes did not improve the file, then you can give the
command :q!RETURN to quit from the editor without writing the
changes. You can also re-edit the same file (starting over) by giving the
command :e!RETURN. Use these commands carefully. It is not possible
to recover the changes you have made after you discard them in this
manner. As above, re-editing a file with :e! only discards changes made
since the last :w command you gave in that file.

You can edit a different file without leaving vi by giving the command
:enameRETURN. If you have not written out your file before you try to
do this, then the editor will tell you this, and delay editing the other file.
You can then give the command :wRETURN to save your work and then
the :e mameRETURN command again, or carefully give the command
:e!nameRETURN, which edits the other file discarding the changes you
have made to the current file. To have the editor automatically save
changes, include set autowrite in your EXINIT file, and use :n instead of
te.

3.6.2 Escaping to a Shell

You can get to a shell to execute a single command by giving a vi com-
mand of the form :!¢mdRETURN. The system will run the single com-
mand e¢md and when the command finishes, the editor will ask you to hit
a RETURN to continue. When you have finished looking at the output on
the screen, you should hit RETURN and the editor will clear the screen

vi 3-17

SECTION 1 Editors

and redraw it. You can then continue editing. You can also give
another : command when it asks you for a RETURN; in this case, the
screen will not be redrawn.

If you wish to execute more than one command in the shell, then you can
give the command :shRETURN to get a new shell. When you finish with
the shell, ending it by typing a 1D, vi will clear the screen and continue.

Note: You can not invoke csh, the C shell, in this way.

On systems which support it, 1Z will suspend the editor and return to
the (top level) shell. When the editor is resumed, the screen will be
redrawn.

3.6.3 Marking and Returning

The command " * returns to the previous place after a motion of the cur-
sor by a command such as /, ? or G. You can also mark lines in the file
with single letter tags and return to these marks later by naming the
tags. Try marking the current line with the command mz, where you
should pick some letter for z, say ‘“‘a’. Then move the cursor to a
different line (any way you like) and hit *a. The cursor will return to

the place which you marked. Marks last only until you edit another file.

When using operators such as d and referring to marked lines, it is often
desirable to delete whole lines rather than deleting to the exact position
in the line marked by m. In this case, you can use the form “z rather
than * z. Used without an operator, “z will move to the first non-white
character of the marked line; similarly *° moves to the first non-white
character of the line containing the previous context mark * .

3.6.4 Adjusting the Screen

If the screen image is messed up because of a transmission error to your
terminal, or because some program other than the editor wrote output to
your terminal, you can hit a {L, the ASCII form-feed character, to refresh
the screen.

On a dumb terminal, if there are @ lines in the middle of the screen as a
result of line deletion, you may get rid of them by typing {R. This
causes the editor to retype the screen, closing up these holes.

Finally, if you wish to place a certain line on the screen at the top, mid-
dle, or bottom of the screen, you can position the cursor to that line, and
then give a z command. You should follow the z command with a
RETURN if you want the line to appear at the top of the window, a . if
you want it at the center, or a — if you want it at the bottom.

3.7 ADVANCED TOPICS

3-18 vi

SECTION 1 Editors

3.7.1 Editing on Slow Terminals

When you are on a slow terminal, it is important to limit the amount of
output which is generated to your screen so that you will not suffer long
delays, waiting for the screen to be refreshed. We have already pointed
out how the editor optimizes the updating of the screen during insertions
on dumb terminals to limit the delays, and how the editor erases lines to
@ when they are deleted on dumb terminals.

The use of the slow terminal insertion mode is controlled by the slowopen
option. You can force the editor to use this mode even on faster termi-
nals by giving the command :se sSlowRETURN. If your system is sluggish
this throttles the amount of output coming to your terminal. You can
disable this option by :se noslowRETURN.

The editor can simulate an intelligent terminal on a dumb one. Try giv-
ing the command :se redrawRETURN. This simulation generates a great
deal of output and is generally tolerable only on lightly loaded systems
and fast terminals. You can disable this by giving the command :se
noredrawRETURN.

The editor also makes editing more pleasant at low speed by starting
editing in a small window, and letting the window expand as you edit.
This works particularly well on intelligent terminals. The editor can
expand the window easily when you insert in the middle of the screen on
these terminals. If possible, try the editor on an intelligent terminal to
see how this works.

You can control the size of the window which is redrawn each time the
screen is cleared by giving window sizes as argument to the commands
which cause large screen motions:

2 (]
Thus, if you are searching for a particular instance of a common string in
a file, you can precede the first search command by a small number, say
3, and the editor will draw three line windows around each instance of
the string which it locates.

You can easily expand or contract the window, placing the current line
as you choose, by giving a number on a z command, after the z and
before the following RETURN, . or —. Thus the command z5. redraws the
screen with the current line in the center of a five line window.

Note: The command 5z. has an entirely different effect, placing line
5 in the center of a new window.

If the editor is redrawing or otherwise updating large portions of the
display, you can interrupt this updating by hitting a {I. If you do this
you may partially confuse the editor about what is displayed on the
screen. You can still edit the text on the screen if you wish; clear up the
confusion by hitting a {L; or move or search again, ignoring the current

vi 3-19

SECTION 1 Editors

state of the display.
3.7.2 Options, Set, and Editor Startup Files

The editor has a set of options, some of which have been mentioned
above. The most useful options are given in the following table.

Name Default Description

autoindent noai Supply indentation automatically

autowrite noaw Automatic write before :n, :ta, {1, !
ignorecase noic Ignore case in searching

lisp nolisp ({) } commands deal with S-expressions

list ' nolist Tabs print as 1I; end of lines marked with $
magic nomagic The characters . [and * are special in scans
number nonu Lines are displayed prefixed with line numbers
paragraphs para=IPLPPPQPbpP LI Macro names which start paragraphs
redraw nore Simulate a smart terminal on a dumb one
sections sect==NHSHH HU Macro names which start new sections
shiftwidth sw==8 Shift distance for <, > and input {D and {T
showmatch nosm Show matching (or { as) or } is typed
slowopen slow Postpone display updates during inserts

term dumb The kind of terminal you are using

The options are of three kinds: numeric options, string options, and tog-
gle options. You can set numeric and string options by a statement of
the form

set opt—=—val
and toggle options can be set or unset by statements of one of the forms

set opt
set noopt

These statements can be placed in your EXINIT in your environment, or
given while you are running vi by preceding them with a : and following
them with a RETURN.

You can get a list of all options which you have changed by the com-
mand :8etRETURN, or the value of a single option by the command :set
opt?RETURN where opt is the option. A list of all possible options and
their values is generated by :set allRETURN. Set can be abbreviated se.
Multiple options can be placed on one line, e.g. :se ai aw nuRETURN.

Options set by the set command only last while you stay in the editor.
It is common to want to have certain options set whenever you use the
editor. This can be accomplished by creating a list of ex commands that
are to be run every time you start up ex, edit, or vi.

Note: All commands which start with : are ex commands.

A typical list includes a set command, and possibly a few map com-
mands. Since it is advisable to get these commands on one line, they can
be separated with the | character, for example:

3-20 vi

TN

N,

(

C

SECTION 1 Editors

set ai aw tersejmap @ dd|map # x

which sets the options autoindent, autowrite, terse, (the set com-
mand), makes @ delete a line, (the first map), and makes # delete a
character, (the second .B map). This string should be placed in the vari-
able EXINIT in your environment. If you use the C-Shell, put this line
in the file .login in your home directory:

setenv EXINIT ‘set ai aw tersejmap @ dd|map # x~

If you use the Bourne Shell, put these lines in the file .profile in your
home directory:

EXINIT="set ai aw tersejmap @ dd|map # x~
export EXINIT

Of course, the particulars of the line would depend on which options you
wanted to set.

3.7.3 Recovering Lost Lines

Vi saves the last 9 deleted blocks of text in a set of registers numbered
1-9. You can get the n’th previous deleted text back in your file by the
command "n p. The ” here says that a buffer name is to follow, n is the
number of the buffer you wish to try (use the number 1 for now), and p
is the put command, which puts text in the buffer after the cursor. If
this doesn’t bring back the text you wanted, hit u to undo this and then
. (dot) to repeat the put command. In general the . command will repeat
the last change you made. As a special case, when the last command
refers to a numbered text buffer, the . command increments the number
of the buffer before repeating the command. Thus a sequence of the
form '

”1pu.u.u.

will, if repeated long enough, show you all the deleted text which has
been saved for you. You can omit the u commands here to gather up all
this text in the buffer, or stop after any . command to keep just the
recovered text. You may use the command P (instead of p) to put the
recovered text before rather than after the cursor.

3.7.4 Recovering Lost Files

If the system crashes, you can recover the work you were doing to within
a few changes. You will normally receive mail when you next log in giv-
ing you the name of the file which has been saved for you. You should
then change to the directory where you were when the system crashed
and give a command of the form:

% vi—r name

replacing name with the name of the file which you were editing. This
will recover your work to a point near where you left off.

vi 3-21

SECTION 1 Editors

Note: In rare cases, some of the lines of the file may be lost. The
editor will give you the numbers of these lines and the text of
the lines will be replaced by the string “LOST’. These lines
will almost always be among the last few which you changed.
You can either choose to discard the changes which you made
(if they are easy to remake) or to replace the few lost lines by
hand.

You can get a listing of the files which are saved for you by giving the
command:

% vi —r

If there is more than one instance of a particular file saved, the editor
gives you the newest instance each time you recover it. In this way, you
can get an older saved copy back by first recovering the newer copies.

For this feature to work, vi must be correctly installed by your System
Administrator, and the mail program must exist to receive mail. The
invocation ‘‘vi -r’’ will not always list all saved files, but they can be
recovered even if they are not listed.

3.7.5 Continuous Text Input

When you are typing in large amounts of text it is convenient to have
lines broken near the right margin automatically. You can cause this to
happen by giving the command :se wm=10RETURN. This causes all
lines to be broken at a space at least 10 columns from the right hand
edge of the screen.

If the editor breaks an input line and you wish to put it back together
you can tell it to join the lines with J. You can give J a count of the
number of lines to be joined as in 3J to join 3 lines. The editor supplies
white space, if appropriate, at the juncture of the joined lines, and leaves
the cursor at this white space. You can kill the white space with x if you
don’t want it.

3.7.6 Features for Program Editing

Vi has a number of commands for editing programs. The thing that
most distinguishes editing of programs from editing of text is the desira-
bility of maintaining an indented structure to the body of the program.
The editor has an autoindent facility for helping you generate correctly
indented programs. »

To enable this facility you can give the command :se aiRETURN. Now
try opening a new line with o and type some characters on the line after
a few tabs. If you start another line, notice that the editor supplies
white space at the beginning of the line to line it up with the previous
line. You cannot backspace over this indentation, but you can use 1D
key to backtab over the supplied indentation.

3-22 vi

=
N

RN

/7

P

O

SECTION 1 Editors

Each time you type 1D you back up one position, normally to an 8
column boundary. This amount is settable; the editor has an option
called shiftwidth which lets you change this value. Try giving the com-
mand :se sw=4RETURN and then experimenting with autoindent again.

For shifting lines in the program left and right, there are operators <
and >. These shift the lines you specify right or left by one shiftwidth.
Try << and > > which shift one line left or right, and <L and >L
which shift the rest of the display left and right.

If you have a complicated expression and wish to see how the parentheses
match, put the cursor at a left or right parenthesis and hit 5. This will
show you the matching parenthesis. This works also for braces { and },
and brackets | and |.

If you are editing C programs, you can use the [[and]] keys to advance
or retreat to a line starting with a {, i.e., a function declaration at a
time. When]] is used with an operator, it stops after a line which starts
with }; this is sometimes useful with y]].

3.7.7 Filtering Portions of the Buffer

You can run system commands over portions of the buffer using the
operator !. You can use this to sort lines in the buffer, or to reformat
portions of the buffer with a pretty-printer. Try typing in a list of ran-
dom words, one per line and ending them with a blank line. Back up to
the beginning of the list, and then give the command !}sortRETURN.
This says to sort the next paragraph of material, and the blank line ends
a paragraph.

3.7.8 Commands for Editing LISP

If you are editing a LISP program, you should set the option lisp by
doing

:se lispRETURN.

This changes the (and) commands to move backwards and forwards
over s-expressions. The { and } commands are like (and) but don’t
stop at atoms. These can be used to skip to the next list, or through a
comment quickly.

The autoindent option works differently for LISP, supplying indent to
align at the first argument to the last open list. If there is no such argu-
ment then the indent is two spaces more than the last level.

There is another option which is useful for typing in LISP, the
showmatch option. Try setting it with

:se SmMRETURN

and then try typing a *‘("’ some words and then a *)”. Notice that the
cursor shows the position of the “(” which matches the ““)” briefly. This
happens only if the matching “(” is on the screen, and the cursor stays
there for at most one second.

vi 3-23

SECTION 1 Editors

The editor also has an operator to realign existing lines as though they
had been typed in with lisp and autoindent set. This is the = opera-
tor. Try the command =% at the beginning of a function. This will
realign all the lines of the function declaration.

When you are editing LISP, the [[and]] advance and retreat to lines
beginning with a (, and are useful for dealing with entire function
definitions.

3.7.9 Macros

Vi has a parameterless macro facility, which lets you set it up so that
when you hit a single keystroke, the editor will act as though you had hit
some longer sequence of keys. You can set this up if you find yourself
typing the same sequence of commands repeatedly.

Briefly, there are two types of macros:

a) Ones where you put the macro body in a buffer register,
say z. You can then type @x to invoke the macro. The @
may be followed by another @ to repeat the last macro.

b) _ You can use the map command from vi (typically in your
EXINIT) with a command of the form:

:map [hs rhsRETURN

mapping lhs into rhs. There are restrictions: lhs should be
one keystroke (either 1 character or one function key) since
it must be entered within one second (unless notimeout is
set, in which case you can type it as slowly as you wish,
and vi will wait for you to finish it before it echoes any-
thing). The lhs can be no longer than 10 characters, the
rhs no longer than 100. To get a space, tab or newline into
lhs or rhs you should escape them with a 1V. (It may be
necessary to double the 1V if the map command is given
inside vi, rather than in ez.) Spaces and tabs inside the rhs
need not be escaped.

Thus to make the q key write and exit the editor, you can give the com-
mand

:map q :wq]V{VRETURN RETURN

which means that whenever you type q, it will be as though you had
typed the four characters :wgRETURN. A {V’s is needed because
without it the RETURN would end the : command, rather than becoming
part of the map definition. There are two {V’s because from within vi,
two 1V’s must be typed to get one. The first RETURN is part of the rhs,
the second terminates the : command.

Macros can be deleted with

unmap lhs

3-24 vi

e

Y

O

SECTION 1 Editors

If the lhs of a macro is “‘#0" through “#9”, this maps the particular
function key instead of the 2-character “‘#’’ sequence. So that terminals
without function keys can access such definitions, the form “‘#x’ will
mean function key z on all terminals (and need not be typed within one
second.) The character “#” can be changed by using a macro in the
usual way:

:map [VIVII #

to use tab, for example. (This won't affect the map command, which still
uses #, but just the invocation from visual mode.)

The undo command reverses an entire macro call as a unit, if it made
any changes.

Placing a ““!” after the word map causes the mapping to apply to input

mode, rather than command mode. Thus, to arrange for 1T to be the
same as 4 spaces in input mode, you can type:

mmap 1T TVBBBP

where P is a blank. The 1V is necessary to prevent the blanks from
being taken as white space between the lhs and rhs.

3.8 ABBREVIATIONS
3.8.1 Word Abbreviations

Word abbreviation is similar to the macro feature. It allows you to type
a short word and have it expanded into a longer word or words. The
commands are :abbreviate and :unabbreviate (:ab and :una) and
have the same syntax as :map. For example:

:ab dfs distributed file system

causes the word “‘dfs’’ to always be changed into the phrase “distributed
file system”. Word abbreviation is different from macros in that only
whole words are affected. If ‘“‘dfs’’ were typed as part of a larger word, it
would be left alone. Also, the partial word is echoed as it is typed.

There is no need for an abbreviation to be a single keystroke, as it should
be with a macro.

3.8.2 Editor Command Abbreviations

The editor has a number of short commands that abbreviate longer com-
mands which we have introduced here. They often save a bit of typing,
and you can learn them as convenient.

3.9 MORE DETAILS

This section includes information on vi commands that will probably be
of interest only to those who are doing advanced or specialized editing
tasks. This information is not required knowledge for those who are
merely using vi to edit text.

vi 3-25

SECTION 1 Editors

3.9.1 Line Representation in the Display

The editor folds long logical lines onto many physical lines in the display.
Commands which advance lines advance logical lines and will skip over
all the segments of a line in one motion. The command | moves the cur-
sor to a specific column, and may be useful for getting near the middle of
a long line to split it in half. Try 80| on a line which is more than 80
columns long.

Note: You can make long lines very easily by using J to join
together short lines.

The editor only puts full lines on the display; if there is not enough room
on the display to fit a logical line, the editor leaves the physical line
empty, placing only an @ on the line as a place holder. When you delete
lines on a dumb terminal, the editor will often just clear the lines to @ to
save time (rather than rewriting the rest of the screen.) You can always
maximize the information on the screen by giving the {R command.

If you wish, you can have the editor place line numbers before each line
on the display. Give the command :se nuRETURN to enable this, and
the command :se nonuRETURN to turn it off. You can have tabs
represented as 1I and the ends of lines indicated with “$” by giving the
command :se listRETURN; :se nolistRETURN turns this off.

Finally, lines consisting of only the character ‘“~ *’ are displayed when
the last line in the file is in the middle of the screen. These represent
physical lines which are past the logical end of file.

3.9.2 Counts

Most vi commands will use a preceding count to affect their behavior in
some way. The following table gives the common ways in which the
counts are used:

new window size s/
scroll amount 1D 1U
line/column number 2z G |

repeat effect most of the rest

The editor maintains a notion of the current default window size. On
terminals which run at speeds greater than 1200 baud, the editor uses the
full terminal screen. On terminals which are slower than 1200 baud
(most dialup lines are in this group), the editor uses 8 lines as the default
window size. At 1200 baud, the default is 16 lines.

This size is the size used when the editor clears and refills the screen
after a search or other motion moves far from the edge of the current
window. The commands which take a new window size as count often
cause the screen to be redrawn. If you anticipate this, but do not need
as large a window as you are currently using, you may wish to change
the screen size by specifying the new size before these commands. In any

3-26 vi

N

SECTION 1 Editors

case, the number of lines used on the screen will expand if you move off
the top with a — or similar command or off the bottom with a command
such as RETURN or {D. The window will revert to the last specified size
the next time it is cleared and refilled.

Note: This will not happen if you use a TL, which just redraws the
screen as it is.

The scroll commands 1D and {U likewise remember the amount of scroll
last specified, using half the basic window size initially. The simple
insert commands use a count to specify a repetition of the inserted text.
Thus 10a-+ ESC will insert a grid-like string of text. A few com-
mands also use a preceding count as a line or column number.

Except for a few commands which ignore any counts (such as fR), the
rest of the editor commands use a count to indicate a simple repetition of
their effect. Thus 5w advances five words on the current line, while
S5RETURN advances five lines. A very useful instance of a count as a
repetition is a count given to the . command, which repeats the last
changing command. If you do dw and then 3., you will delete first one
and then three words. You can then delete two more words with 2..

3.9.3 More File Manipulation Commands

The following table lists the file manipulation commands which you can
use when you are in vi.

W write back changes

swq write and quit

X write (if necessary) and quit (same as ZZ).
e name edit file name

se! re-edit, discarding changes

e + name edit, starting at end

e +n edit, starting at line n

ze # edit alternate file

W name write file name

sw! name overwrite file name

:z,yw name write lines z through y to name

v name read file name into buffer

ar lemd read output of e¢md into buffer

mn edit next file in argument list

:n! edit next file, discarding changes to current
n args specify new argument list

ita tag edit file containing tag tag, at tag

All of these commands are followed by a RETURN or ESC. The most
basic commands are :w and :e. A normal editing session on a single file
will end with a ZZ command. If you are editing for a long period of
time you can give :w commands occasionally after major amounts of
editing, and then finish with a ZZ. When you edit more than one file,
you can finish with one by doing a :w then start editing a new file by

vi 3-27

SECTION 1 Editors

giving a :e command, or set autowrite and use :n <file>.

If you make changes to the editor’s copy of a file, but do not wish to
write them back, then you must give an ! after the command you would
otherwise use; this forces the editor to discard any changes you have
made. Use this carefully.

The :e command can be given a 4 argument to start at the end of the
file, or a 4-n argument to start at line n. In actuality, n may be any edi
tor command not containing a space, often a scan like +/pat or +?pat.
In forming new names to the e command, you can use the character %%
which is replaced by the current file name, or the character # which is
replaced by the alternate file name. The alternate file name is generally
the last name you typed other than the current file. Thus, if you try to
do a :e and get a diagnostic that you haven’t written the file, you can
give a :w command and then a :e # command to redo the previous :e.

You can write part of the buffer to a file by finding out the lines that
bound the range to be written using 1G, and giving these numbers after
the : and before the w, separated by ,’s. You can also mark these lines
with m and then use an address of the form “z,”y on the w command
here.

You can read another file into the buffer after the current line by using
the :r command. You can similarly read in the output from a command,
just use !c¢md instead of a file name.

If you wish to edit a set of files in succession, you can give all the names
on the command line, and then edit each one in turn using the command
:n. It is also possible to respecify the list of files to be edited by giving
the :n command a list of file names, or a pattern to be expanded as you
would have given it on the initial vi command.

If you are editing large programs, you will find the :ta command very
useful. It utilizes a data base of function names and their locations,
which can be created by programs such as ctags, to quickly find a func-
tion whose name you give. If the :ta command will require the editor to
switch files, then you must :w or abandon any changes before switching.
You can repeat the :ta command without any arguments to look for the
same tag again.

3.9.4 More About Searching for Strings

When you are searching for strings in the file with / and ?, the editor
normally places you at the next or previous occurrence of the string. If
you are using an operator such as d, ¢ or y, then you may well wish to
affect lines up to the line before the line containing the pattern. You can
give a search of the form /pat/—n to refer to the n’'th line before the next
line containing pat, or you can use + instead of — to refer to the lines
after the one containing pet. If you don’t give a line offset, then the edi-
tor will affect characters up to the match place, rather than whole lines;

3-28 vi

SECTION 1 Editors

thus, use “+0” to affect up to the line which matches.

You can have the editor ignore the case of words in the searches it does
by giving the command :se icRETURN. The command :se noicRETURN
turns this off.

Strings given to searches may actually be regular expressions. If you do
not want or need this facility, you should

set nomagic

in your EXINIT. In this case, only the characters { and $ are special in
patterns. The character \ is also then special (as it is most everywhere in
the system), and may be used to get at the extended pattern matching
facility. It is also necessary to use a \ before a / in a forward scan or a ?
in a backward scan, in any case. The following table gives the extended
forms when magic is set.

1 at beginning of pattern, matches beginning of line
$ at end of pattern, matches end of line

. matches any character

\< matches the beginning of a word

\> matches the end of a word

[str] matches any single character in str

[tstr] matches any single character not in str

[z-y] matches any character between z and y

* matches any number of the preceding pattern

If you use nomagic mode, then the . [and * primitives are given with a
preceding \.

3.9.5 More About Input Mode

There are a number of characters which you can use to make corrections
during input mode. These are summarized in the following table.

tH deletes the last input character

W deletes the last input word, defined as by b
erase your erase character, same as TH

kill your kill character, deletes the input on this line
\ escapes a following {H and your erase and kill
ESC ends an insertion

DEL interrupts an insertion, terminating it abnormally
RETURN starts a new line '

1D backtabs over autoindent

01D kills all the autoindent

11D same as 01D, but restores indent next line

1V __quotes the next non-printing character into the file

The most common way of making corrections to input is by typing 1H to
correct a single character, or by typing one or more W's to back over
incorrect words. If you use # as your erase character in the normal sys-
tem, it will work like TH.

vi 3-29

SECTION 1. Editors

Your system kill character, normally @, 1X or U, will erase all the
input you have given on the current line. In general, you can neither
erase input back around a line boundary nor can you erase characters
which you did not insert with this insertion command. To make correc-
tions on the previous line after a new line has been started you can hit
ESC to end the insertion, move over and make the correction, and then
return to where you were to continue. The command A which appends
at the end of the current line is often useful for continuing.

If you wish to type in your erase or kill character (say # or @) then you
must precede it with a \, just as you would do at the normal system
command level. A more general way of typing non-printing characters
into the file is to precede them with a {V. The 1V echoes as a 1 charac-
ter on which the cursor rests. This indicates that the editor expects you
to type a control character. In fact, you may type any character and it
will be inserted into the file at that point.

Note: Almost any character. The implementation of the editor does
not allow the NULL (1@) character to appear in files. Also the
LF (linefeed or 1J) character is used by the editor to separate
lines in the file, so it cannot appear in the middle of a line.
You can insert any other character, however, if you wait for
the editor to echo the] before you type the character. In
fact, the editor will treat a following letter as a request for
the corresponding control character. This is the only way to
type 1S or 1Q, since the system normally uses them to
suspend and resume output and never gives them to the edi-
tor to process.

If you are using autoindent, you can backtab over the indent which it
supplies by typing a {D. This backs up to a shiftwidth boundary. This
only works immediately after the supplied autoindent.

When you are using autoindent, you may wish to place a label at the
left margin of a line. The way to do this easily is to type 1 and then {D.
The editor will move the cursor to the left margin for one line, and
restore the previous indent on the next. You can also type a 0 followed
immediately by a 1D if you wish to kill all the indent and not have it
come back on the next line.

3.9.6 Uppercase Only Terminals

Note: We do not support uppercase-only terminals.

3.9.7 Viand ex

Vi is actually one mode of editing within the editor ex. When you are
running vi you can escape to the line-oriented editor of ex by giving the

3-30 vi

(O

s

‘)

O

SECTION 1 Editors

command Q. All of the : commands which were introduced above are
available in ex. Likewise, most ex commands can be invoked from vi
using :. Just give them without the : and follow them with a RETURN.

In rare instances, an internal error may occur in vi. In this case, you will
get a diagnostic and be left in the command mode of ez. You can then
save your work and quit if you wish by giving a command x after the :
which ez prompts you with, or you can reenter vi by giving ez a vi com-
mand.

There are a number of things which you can do more easily in ez than in
vi. Systematic changes in line-oriented material are especially easy. You
can read the advanced editing documents for the editor ed to find out a
lot more about this style of editing. Experienced users often mix their
use of ex command mode and vi command mode to speed the work they
are doing.

3.9.8 Open Mode: vi on Hardcopy Terminals and ‘“Glass
TTY’s”

If you are on a hardcopy terminal or a terminal which does not have a
cursor which can move off the bottom line, you can still use the com-
mand set of vi, but in a different mode. When you give a vi command,
the editor will tell you that it is using open mode. This name comes
from the open command in ez, which is used to get into the same mode.

The only difference between visual mode and open mode is the way in
which the text is displayed.

In open mode, the editor uses a single line window into the file, and mov-
ing backwards and forwards in the file causes new lines to be displayed,
always below the current line. Two vi commands work differently in
open mode: z and fR. The z command does not take parameters in
open mode. Instead, it draws a ‘“‘window of context’’ around the current
line, then returns you to the current line.

If you are using a hardcopy terminal, the {R command retypes the
current line as two lines: the first line is the unedited line, the second is
the edited line. When you delete characters, the editor types a number
of \’s to show you the characters which are deleted. The editor also
reprints the current line soon after such changes so that you can see-
what the line looks like again.

It is sometimes useful to use this mode on very slow terminals which can
support vi in the full screen mode. You can do this by entering ez and
using an open command.

3.10 A SUMMARY OF vi COMMANDS

This section summarizes the various vi editing and cursor motion com-
mands. In it, we use the following notational conventions. [option] is
used to denote optional parts of a command. Many vi commands have

vi ‘ 3-31

SECTION 1 Editors

an optional count. [ent] means that an optional number may precede the N~
command to multiply or iterate the command.

{variable item} is used to denote parts of the command which must
appear, but can take a number of different values.

<character [-character]> means that the character or one of the
characters in the range described between the two angle brackets is to be
typed. For example <esc> means the escape key is to be typed. <a-
z> means that a lower case letter is to be typed.

1 <character> means that the character is to be typed as a control

character, that is, with the CTRL key held down while simultaneously

typing the specified character. In this document, control characters will

be denoted using the uppercase character, but { <uppercase chr> and

1 <lowercase chr> are equivalent. For example, <TD> is equal to .
<1d>. The most common character abbreviations used in this list are C\
as follows:

<esc> escape, octal 033

<er> carriage return, TM, octal 015

<If> linefeed {J, octal 012

<nl> newline, 1J, octal 012 (same as linefeed) N

<bs> backspace, 1H, octal 010 (\

<tab> tab, {I, octal 011

<bell> bell, 1G, octal 07

<ff> formfeed, 1L, octal 014

<sp> space, octal 040

 delete, octal 0177 .

3.10.1 Entry and Exit

To enter vi on a particular file, type
vi file

The file will be read in and the cursor will be placed at the beginning of
the first line. The first screenfull of the file will be displayed on the ter-
minal.

To get out of the editor, type
77

If you are in some special mode, such as input mode or the middle of a
multi-keystroke command, it may be necessary to type <esc> first.

3-32 vi

O

SECTION 1

Editors

3.10.2 Cursor and Page Motion
[ent] <bs> or [ent]h or [ent]«

Move the cursor to the left one character.
Cursor stops at the left margin of the page.
If cnt is given, these commands move that
many spaces. ’

[ent]tN or [ent]j or [ent]| or [ent]<If>

[ent]1P or [ent]k or [ent]t

Move down one line. Moving off the screen
scrolls the window to force a new line onto
the screen. Mnemonic: Next

Move up one line. Moving off the top of the
screen forces new text onto the screen.
Mnemonic: Previous

[ent]<sp> or [ent]l or [cnt]—

[ent]-

[ent]+ or [ent]<er>

[cnt]$

Move to the right one character. Cursor will
not go beyond the end of the line.

Move the cursor up the screen to the begin-
ning of the next line. Scroll if necessary.

Move the cursor down the screen to the
beginning of the next line. Scroll up if neces-

sary.

Move the cursor to the end of the line. If
there is a count, move to the end of the line
”ent” lines forward in the file.

Move the cursor to the beginning of the first
word on the line.

Move the cursor to the left margin of the

. current line.

[ent]|

[ent]w

[cnt]W

vi

Move the cursor to the column specified by
the count. The default is column zero.

Move the cursor to the beginning of the next
word. If there is a count, then move forward
that many words and position the cursor at
the beginning of the word. Mnemonic: next-
word

Move the cursor to the beginning of the next
word which follows a ”white space”
(<sp>,<tab>, or <nl>). Ignore other
punctuation.

3-33

SECTION 1 Editors

[ent]b Move the cursor to the preceding word.
Mnemonic: backup-word

[ent]B Move the cursor to the preceding word that is
separated from the current word by a "white
space” (<sp>,<tab>, or <nl>).

[cnt]e Move the cursor to the end of the current
word or the end of the "ent”’th word hence.
Mnemonic: end-of-word

[cnt]E Move the cursor to the end of the current
word which is delimited by ”white space”
(<sp>,<tab>, or <nl>).

[line number|G Move the cursor to the line specified. Of par-
ticular use are the sequences ”1G” and ”G”,
which move the cursor to the beginning and
the end of the file respectively. Mnemonic:
Go-to

Note: The next four commands (1D, U, 1F, 1B) are not true
motion commands, in that they cannot be used as the object
of commands such as delete or change.

[ent]tD Move the cursor down in the file by "cnt” lines (or
the last "cnt” if a new count isn’t given. The initial
default is half a page.) The screen is simultaneously
scrolled up. Mnemonic: Down

[ent] U Move the cursor up in the file by "cnt” lines. The
screen is simultaneously scrolled down. Mnemonic:
Up

[ent]1F Move the cursor to the next page. A count moves

that many pages. Two lines of the previous page are
kept on the screen for continuity if possible.
Mnemonic: Forward-a-page

[ent] 1B Move the cursor to the previous page. Two lines of
the current page are kept if possible. Mnemonic:
Backup-a-page

[ent](Move the cursor to the beginning of the next sen-

” "

tence. A sentence is defined as ending with a ».”,

71 or ”?” followed by two spaces or a <nl>.
[ent]) Move the cursor backwards to the beginning of a
sentence.
[ent]} Move the cursor to the beginning of the next para-

graph. This command works best inside nroff docu-
ments. It understands two sets of nroff macros,

3-34 vi

TN

®

O

SECTION 1

[ent]{
1

%

[ent]H

[ent]L

m<a-z>

Editors

—ms and —mm, for which the commands ”.LI”,

” LP”, ”.PP”, ”.QP”, "P”, as well as the nroff com-
mand ”.bp”, are considered to be paragraph delim-
iters. A blank line also delimits a paragraph. The
nroff macros that it accepts as paragraph delimiters
is adjustable. See paragraphs under the Set
Commands section.

Move the cursor backwards to the beginning of a
paragraph.

Move the cursor to the next ”"section”, where a sec-
tion is defined by two sets of nroff macros, —ms and
—mm, in which ”.H”, ”.SH”, and ”.H” delimit a sec-
tion. A line beginning with a <ff> <nl> sequence,
or a line beginning with a ”{” are also considered to
be section delimiters. The last option makes it use-
ful for finding the beginnings of C functions. The
nroff macros that are used for section delimiters can
be adjusted. See sections under the Set Com-
mands section.

Move the cursor backwards to the beginning of a
section.

Move the cursor to the matching parenthesis or
brace. This is very useful in C or lisp code. If the
cursor is sitting on a () { or }, the cursor is moved
to the matching character at the other end of the
section. If the cursor is not sitting on a brace or a
parenthesis, vi searches forward until it finds one
and then jumps to the match mate.

If there is no count, move the cursor to the top left
position on the screen. If there is a count, then
move the cursor to the beginning of the line ”cnt”
lines from the top of the screen. Mnemonic: Home

If there is no count, move the cursor to the begin-
ning of the last line on the screen. If there is a
count, then move the cursor to the beginning of the
line ”ent” lines from the bottom of the screen.
Mnemonic: Last

Move the cursor to the beginning of the middle line
on the screen. Mnemonic: Middle

This command does not move the cursor, but it
marks the place in the file and the character ” <a-
z>" becomes the label for referring to this location
in the file. See the next two commands. Mnemonic:
mark

3-35

SECTION 1

Editors

Note: The mark command is not a motion. It cannot be used as the
target of commands such as delete.

‘<Larz>

* <a—z>.

3.10.3 Searches

Move the cursor to the beginning of the line that is
marked with the label ” <a-z>".

Move the cursor to the exact position on the line
that was marked with the label “<a-z>".

Move the cursor back to the beginning of the line
where it was before the last ‘“non-relative’” move. A
“non-relative’” move is something such as a search or
a jump to a specific line in the file, rather than mov-
ing the cursor or scrolling the screen.

Move the cursor back to the exact spot on the line
where it was located before the last ”non-relative”
move.

The following commands allow you to search for items in a file.

[ent)f{chr}

[ent]F {chr}

[ent]t{chr}

[ent]T{chr}

[ent];
[ent],

Search forward on the line for the next or ¢ntth
occurrence of the character chr. The cursor is placed
at the character of interest. Mnemonic: find charac-
ter

Search backwards on the line for the next or cnt'th
occurrence of the character ‘““chr’. The cursor is
placed at the character of interest.

Search forward on the line for the next or c¢nt'th
occurrence of the character ‘“‘chr’’. The cursor is
placed just preceding the character of interest.
Mnemonic: move cursor up to character

Search backwards on the line for the next or ¢nt'th
occurrence of the character ““chr’’. The cursor is
placed just preceding the character of interest.

Repeat the last ”f”, "F”, ”t” or ”T” command.

Repeat the last ”f”, ”F”, ”t” or ”T” command, but
in the opposite search direction. This is useful if you
overshoot.

[ent]/[string] /RETURN

3-36

Search forward for the next occurrence of ”string”.
Wraparound at the end of the file does occur. The
final </> is not required.

)

O

O

D

SECTION 1 Editors

[ent]?[string]’RETURN

Search backwards for the next occurrence of
”string”. If a count is specified, the count becomes
the new window size. Wraparound at the beginning
of the file does occur. The final <?> is not

required.

n Repeat the last /[string]|/ or ?[string]? search.
Mnemonic: next occurrence.

N ~ Repeat the last /[string]/ or ?[string]? search, but in

the reverse direction.

:g/[string]/[editor command]<nl>

Using the : syntax, it is possible to do global
searches in the style of the ”ed” editor.

3.10.4 Text Insertion

The following commands allow for the insertion of text. All multicharac-
ter text insertions are terminated with an <esc> character. The last
change can always be undone by typing a u. The text insert in inser-
tion mode can contain newlines.

a{text} <esc> Insert text immediately following the cursor position.
Mnemonic: append

A{text} <esc> Insert text at the end of the current line. Mnemoniec:
Append

i{text} <esc> Insert text immediately preceding the cursor posi-
tion. Mnemonic: insert

I{text} <esc> Insert text at the beginning of the current line.

o{text} <esc> Insert a new line after the line on which the cursor
appears and insert text there. Mnemonic: open new
line

O{text} <esc> Insert a new line preceding the line on which the
cursor appears and insert text there.

3.10.5 Text Deletion

The following commands allow the user to delete text in various ways.
All changes can always be undone by typing the u command.

[ent]x Delete the character or characters starting at the
cursor position.

[ent]X Delete the character or characters starting at the
character preceding the cursor position.

D Deletes the remainder of the line starting at the cur-
sor. Mnemonic: Delete the rest of line

vi 3-37

SECTION 1 Editors

[ent]d{motion} Deletes one or more occurrences of the specified
motion. Any motion from sections 4.1 and 4.2 can
be used here. The d can be stuttered (e.g. [ent]dd)
to delete cnt lines.

3.10.6 Text Replacement

The following commands let you simultaneously delete and insert new
text. All such actions can be undone by typing u following the com-
mand.

r<chr> Replaces the character at the current cursor position
with <chr>. This is a one character replacement.
No <esc> is required for termination. Mnemonic:
replace character

R{text}<esc> Starts overlaying the characters on the screen with
whatever you type. It does not stop until an <esc>
is typed.

[ent]s{text} <esc> Substitute for cnt” characters beginning at the
current cursor position. A ”$” will appear at the
position in the text where the ”cnt”’th character
appears so you will know how much you are erasing.
Mnemonic: substitute

[ent]S{text} <esc> Substitute for the entire current line (or lines). If no
count is given, a ”$” appears at the end of the
current line. If a count of more than 1 is given, all
the lines to be replaced are deleted before the inser-
tion begins.

[cnt]c{motion}{text} <esc> Change the specified "motion” by replacing
it with the insertion text. A ”$” will appear at the
end of the last item that is being deleted unless the
deletion involves whole lines. The specified
{motion} can be any motion listed in the sections
above. Stuttering the c (e.g. [ent]cc) changes ent
lines.

3.10.7 Moving Text

Vi provides a number of ways of moving chunks of text around. There
are nine buffers into which each piece of deleted or ‘‘yanked’ text is put,
in addition to the ‘“‘undo’ buffer. The most recent deletion or yank is in
the ‘““undo” buffer and also in buffer 1. The next most recent is in buffer
2, and so forth. Each new deletion pushes down all the older deletions.
Deletions older than 9 disappear. There is also a set of named registers,
a-z, into which text can optionally be placed. If any delete or replace-
ment type command is preceded by ” <a-z>, that named buffer will
contain the text deleted after the command is executed. For example,
”a3dd will delete three lines starting at the current line and put them in
buffer ”a.

3-38 vi

)

C

SECTION 1

Editors

Note: Referring to an upper case letter as a buffer name (A-Z) is the
same as referring to the lower case letter, except that text
placed in such a buffer is appended to it instead of replacing

it.

There are two more basic commands and some variations useful in get-
ting and putting text into a file.

[’ <a-z>][ent]y{motion} Yank the specified item or "cnt” items and put

[> <a-z>][ent]Y

[? <a-z>|p

" <a-z>]P

[ent] > {motion}

vi

in the undo” buffer or the specified buffer. The
variety of ”items” that can be yanked is the same as
those that can be deleted with the ”d” command or
changed with the ”¢” command. In the same way
that ”dd” means delete the current line and ”cc”
means replace the current line, yy” means yank the
current line.

Yank the current line or the ”cent” lines starting
from the current line. If no buffer is specified, they
will go into the "undo” buffer, in the same manner

as any delete. It is equivalent to ”yy”. Mnemonic:
Yank

Put "undo” buffer or the specified buffer down after
the cursor. If whole lines were yanked or deleted
into the buffer, then they will be put down on the
line following the line the cursor is on. If something
else was deleted, like a word or sentence, then it will
be inserted immediately following the cursor.
Mnemonic: put buffer

It should be noted that text in the named buffers
remains there when you start editing a new file with
the :e file<esc> command. Since this is so, it is
possible to copy or delete text from one file and
carry it over to another file in the buffers. However,
the undo buffer and the ability to undo are lost
when changing files.

Put "undo” buffer or the specified buffer down
before the cursor. If whole lines were yanked or
deleted into the buffer, then they will be put down
on the line preceding the line the cursor is on. If
something else was deleted, like a word or sentence,
then it will be inserted immediately preceding the
cursor.

The shift operator will right shift all the text from
the line on which the cursor is located to the line
where the motion is located. The text is shifted by
one shiftwidth. > > means right shift the current

3-39

SECTION 1

[ent] < {motion}

[ent]={motion}

Editors

line or lines. \

The shift operator will left shift all the text from the
line on which the cursor is located to the line where
the item is located. The text is shifted by one
shiftwidth. < < means left shift the current line
or lines. Once the line has reached the left margin it
is not further affected.

Prettyprints the indicated area according to lisp
conventions. The area should be a lisp s-expression.

3.10.8 Miscellaneous Commands

77

1L
1R

[ent]J

3-40

This is the normal way to exit from vi. If any
changes have been made, the file is written out. You
are returned to the shell at that point. T

Redraw the current screen. ~

On dumb terminals, those not having the ”delete

line” function (the vt100 is such a terminal), vi saves

redrawing the screen when you delete a line by just

marking the line with an ”@” at the beginning and

blanking the line. If you want to actually get rid of

the lines marked with ”@” and see what the page R
looks like, typing a 1R will do this. (b

"Dot” is a particularly useful command. It repeats
the last text modifying command. Therefore, you
can type a command once and then move to another
place and repeat it by just typing ”.”.

Perhaps the most important command in the editor,
u undoes the last command that changed the buffer.
Mnemonic: undo —

Undo all the text modifying commands performed on <\~
the current line since the last time you moved onto
it.

Join the current line and the following line. The
<nl> is deleted and the two lines joined, usually
with a space between the end of the first line and
the beginning of what was the second line. If the
first line ended with a ”period”, then two spaces are
inserted. A count joins the next cnt lines.
Mnemonic: Join lines

Switch to ex editing mode. In this mode, vi will
behave very much like ed. The editor in this mode
will operate on single lines normally and will not

- attempt to keep the "window” up to date. Once in (\ ‘

this mode it is also possible to switch to the open -

vi

SECTION 1
O

]

Editors

mode of editing. By entering the command [line
number]open<nl>, you enter this mode. It is
similar to the normal visual mode except the window
is only one line long. Mnemonic: Quit visual mode

An abbreviation for a tag command. The cursor
should be positioned at the beginning of a word.
That word is taken as a tag name, and the tag with
that name is found as if it had been typed in a :tag
command.

[ent]!{motion}{UNIX cmd}<nl>

This-vi command lets lets you send a section
through any UNIX filter program, then replaces that
section of text with the output of that program.
Useful examples are programs like ¢b, sort, and
nroff. For instance, using sort it would be possible
to sort a section of the current file into a new list.
Using !! means take a line or lines starting at the
line the cursor is currently on and pass them to the
UNIX command.

z{cnt}<nl> This resets the current window size to ¢nt lines and
redraws the screen.
O 3.10.9 Special Insert Characters
v During inserts, typing a 1V allows you to quote con-

[111D or [0]1D

W

trol characters into the file. Any character typed
after the 1V will be inserted into the file.

<1D> without any argument backs up one
shiftwidth. This is necessary to remove indenta-
tion that was inserted by the autoindent feature.
1<tD> temporarily removes all the autoindenta-
tion, thus placing the cursor at the left margin. On
the next line, the previous indent level will be
restored. This is useful for putting ”labels” at the
left margin. 0<{D> says remove all autoindents
and stay that way. Thus the cursor moves to the
left margin and stays there on successive lines until
<tab>’s are typed. As with the <tab>, the
<tD> is only effective before any other ”non-
autoindent” controlling characters are typed.
Mnemonic: Delete a shiftwidth

If the cursor is sitting on a word, <{TW> moves the
cursor back to the beginning of the word, thus eras-
ing the word from the insert. Mnemonic: erase
Word

3-41

SECTION 1

<bs>

Editors

The backspace always serves as an erase during
insert modes in addition to your normal ”erase”
character. To insert a <bs> into your file, use the
<1V> to quote it.

3.10.10 ‘:” Commands

Typing a ”:” during command mode causes vi to put the cursor at the

9.9

bottom on the screen in preparation for a command. In the ”:” mode, vi
can be given most ed commands. From this mode, you may exit from vi
or switch to editing a different file. All commands of this variety are ter-
minated by a <cr> or an <esc>.

ww(!] [file]

:q[l]

efl] [+[ecmd]] [file]

]

:n[!]

Causes vi to write out the current text to the disk.
It is written to the file you are editing unless ”file” is
supplied. If ”file” is supplied, the write is directed to
that file instead. If that file already exists, vi will
not perform the write unless the ”!” is supplied indi-
cating you really want to destroy the existing file.

Causes vi to exit. If you have modified the file you
are looking at currently and haven't written it out,
vi will refuse to exit unless the ”!” is supplied.

Start editing a new file called "file” or start editing
the current file over again. The command ”:e!” says
”ignore the changes I've made to this file and start
over from the beginning”. It is useful if you make
major editing errors. The optional ”+” says instead
of starting at the beginning, start at the "end”, or, if
”cmd” is supplied, execute "ecmd” first. Useful cases
of this are where cmd is "n” (any integer) which
starts at line number n, and ” /text”, which searches
for "text” and starts at the line where it is found.

Switch back to the place you were before your last
tag command. If your last tag command stayed
within the file, 1 returns to that tag. If you have
no recent tag command, it will return to the same
place in the previous file that it was showing when
you switched to the current file.

Start editing the next file in the argument list. Since
vi can be called with multiple file names, the ”:n”
command tells it to stop work on the current file and
switch to the next file. If the current file was
modified, it has to be written out before the ”:n” will
work or else the ”!” must be supplied, which says
discard the changes I made to the current file.

:n[!] file [file file ...] Replace the current argument list with a new list of

3-42

files and start editing the first file in this new list.

N

N

SECTION 1 Editors

ir file Read in a copy of ”file” on the line after the cursor.

v lemd Execute the "cmd” and take its output and put it
into the file after the current line.

slemd Execute any UNIX shell command.

tafl] tag Vi looks in the file named tags in the current direc-

tory. Tags is a file of lines in the format:
tag filename vi-search-command

If vi finds the tag you specified in the :ta command,
it stops editing the current file if necessary and if the
current file is up to date on the disk, it switches to
the file specified and uses the search pattern specified
to find the "tagged” item of interest. This is partic-
ularly useful when editing multifile C programs.
There is a program called ctags which generates an
appropriate tags file for C and FORTRAN pro-
grams so that by saying :ta function<nl> you will
be switched to that function. It could also be useful
when editing multifile documents, though the tags
file would have to be generated manually.

3.10.11 Special Arrangements for Startup

Vi takes the value of $TERM and looks up the characteristics of that
terminal in the file /etc/termcap. If you don’t know vi's name for the
terminal you are working on, look in /etc/termcap.

When vi starts, it attempts to read the variable EXINIT from your
environment. If EXINIT exists, vi takes the values in it as the default
values for certain of its internal constants. See the section on ”Set
Values” for further details. If EXINIT doesn’t exist, you will get all the
normal defaults.

To recover from a crash or inadvertent hangup, re-establish contact with
a UNIX shell, then type:

vi —r file

This will normally recover the file. If there is more than one temporary
file for a specific file name, vi recovers the newest one. You can get an
older version by recovering the file more than once. The command ”vi

-r” without a file name gives you the list of files that were saved in the

last system crash (but not the file just saved when the phone was hung

up).

3.10.12 Set Commands

Vi has a number of internal variables and switches which can be set to
achieve special effects. These options come in three forms, those that are
switches, which toggle from off to on and back, those that require a
numeric value, and those that require an alphanumeric string value. The

vi 3-43

SECTION 1 Editors

toggle options are set by a command of the form:
:set option<nl>
and turned off with the command:
:set nooption<nl>
Commands requiring a value are set with a command of the form:
:set option=value<nl>
To display the value of a specific option type:
:set option? <nl>
To display only those that you have changed type:
iset<nl>

and to display the long table of all the settable parameters and their
current values type:

;set all<nl>

Most of the options have a long form and an abbreviation. Both are
listed in the following table as well as the normal default value.

To arrange to have values other than the default used every time you
enter vi, place the appropriate set command in EXINIT in your environ-
ment, e.g.

EXINIT="set ai aw terse sh=/bin/csh’
export EXINIT

or
setenv EXINIT ’set ai aw terse sh=/bin/csh’

for the Bourne and C Shells respectively. These are usually placed in
your .profile or .login.

autoindent ai Default: noai Type: toggle
When in autoindent mode, vi helps you indent code
by starting each line in the same column as the
preceding line. Tabbing to the right with <tab> or
<1T> will move this boundary to the right. It can
be moved to the left with <1D>.

autoprint ap Default: ap Type: toggle
Causes the current line to be printed after each ex
text modifying command. This is not of much
interest in the normal vi visual mode.

autowrite aw Default: noaw type: toggle
Autowrite causes an automatic write to be done if
there are unsaved changes before certain commands
which change files or otherwise interact with the

3-44 vi

SECTION 1

beautify bf

directory dir

errorbells eb

hardtabs ht

ignorecase ic

lisp

list

magic

number nu

open

optimize opt

paragraphs para

vi

Editors

outside world. These commands are :!, :tag, :next,
:rewind, 11, and 1].

Default: nobf Type: toggle
Causes all control characters except <tab>, <nl>,
and <fi> to be discarded.

Default: dir=/tmp Type: string
This is the directory in which vi puts its temporary
file.

Default: noeb Type: toggle
Error messages are preceded by a <bell>.

Default: hardtabs=8 Type: numeric

This option contains the value of hardware tabs in
your terminal, or of software tabs expanded by
DOMAIN/IX.

Default: noic Type: toggle
All upper case characters are mapped to lower case
in regular expression matching.

Default: nolisp Type: toggle

Autoindent for lisp code. The commands () [[and
]] are modified appropriately to affect s-expressions
and functions.

Default: nolist Type: toggle
All printed lines have the <tab> and <nl> char-
acters displayed visually.

Default: magic Type: toggle

Enable the metacharacters for matching. These
include . * < > [string] [{string] and [<chr>-
<chr>].

Default: nonu Type: toggle.
Each line is displayed with its line number.

Default: open Type: toggle
When set, prevents entering open or visual modes
from ex or edit.

Default: opt Type: toggle

Basically of use only when using the ex capabilities.
This option prevents automatic <er>s from taking
place, and speeds up output of indented lines.

Default: para=IPLPPPQPP bp Type: string

Each pair of characters in the string indicate nroff
macros which are to be treated as the beginning of a
paragraph for the { and } commands. The default
string is for the -ms and -mm macros. To indicate

3-45

SECTION 1

prompt

redraw

report

scroll

sections

shell sh

shiftwidth sw

showmatch sm

3-46

Editors

one-letter nroff macros, such as .P or .H, quote a
space in for the second character position. For
example:

:set paragraphs=P\ bp<nl>

would cause vi to consider .P and .bp as paragraph
delimiters.

Default: prompt Type: toggle

In ex command mode the prompt character : will be
printed when ex is waiting for a command. This is
not of interest from vi.

Default: noredraw Type: toggle

On dumb terminals, force the screen to always be up
to date, by sending great amounts of output. Useful
only at high speeds.

Default: report=5 Type: numeric

This sets the threshold for the number of lines
modified. When more than this number of lines are
modified, removed, or yanked, vi will report the
number of lines changed at the bottom of the screen.

Default: scroll={1/2 window} Type: numeric

This is the number of lines that the screen scrolls up
or down when using the <tU> and <1D> com-
mands.

Default: sections==SHNHH HU Type: string

Each two-character pair of this string specify nroff
macro names which are to be treated as the begin-
ning of a section by the]] and [[commands. The
default string is for the -ms and -mum macros. To
enter one-letter nroff macros, use a quoted space as
the second character. See paragraphs for a fuller
explanation.

Default: sh=from environment SHELL or /bin/sh
Type: string

This is the name of the sh to be used for ”escaped”
commands.

Default: sw=8 Type: numeric

This is the number of spaces that a <{T> or
<1D> will move over for indenting, and the
amount < and > shift by.

Default: nosm Type: toggle

When a) or } is typed, show the matching (or { by
moving the cursor to it for one second if it is on the
current screen.

)

vi

D

-

/\
/
{

O

SECTION 1

slowopen slow

tabstop ts

taglength tl

term

terse

warn

window

Editors

Default: terminal dependent Type: toggle

On terminals that are slow and unintelligent, this
option prevents the updating of the screen some of
the time to improve speed.

Default: ts=8 Type: numeric
<tab>s are expanded to boundaries that are multi-
ples of this value.

Default: t1=0 Type: numeric
If nonzero, tag names are only significant to this
many characters.

Default: (from environment TERM, else dumb)
Type: string

This is the terminal and controls the visual displays.
To change term when in "visual” mode, you must Q
to command mode, type a set term command, then
re-enter vi. (You may also exit vi, change $TERM,
and reenter.) The definitions that drive a particular
terminal type are found in the file /etc/termcap.

Default: terse Type: toggle
When set, the error diagnostics are short.

Default: warn Type: toggle
You are warned if you try to escape to the shell
without writing out the current changes.

Default: window={8 at 600 baud or less, 16 at 1200
baud, and screen size — 1 at 2400 baud or more}
Type: numeric

This is the number of lines in the window whenever
vi must redraw an entire screen. It is useful to
make this size smaller if you are on a slow line.

w300, w1200, w9600 These set window, but only within the corresponding

wrapscan ws

wrapmargin wm

speed ranges. They are useful in an EXINIT to
fine-tune window sizes. For example,

set w300—4 w1200=12

causes a 4 lines window at speed up to 600 baud, a
12 line window at 1200 baud, and a full screen (the
default) at over 1200 baud.

Default: ws Type: toggle
Searches will wraparound the end of the file when
this option is set. When it is off, the search will ter-

minate when it reaches the end or the beginning of
the file.

Default: wm=0 Type: numeric
Vi will automatically insert a <nl> when it finds a

3-47

SECTION 1

writeany wa

3-48

Editors

natural break point (usually a <sp> between
words) that occurs within "wm” spaces of the right
margin. Therefore with ”wm=0" the option is off.
Setting it to 10 would mean that any time you are
within 10 spaces of the right margin vi would be
looking for a <sp> or <tab> which it could
replace with a <nl>. This is convenient for people
who forget to look at the screen while they type.

Default: nowa Type: toggle

Vi normally makes a number of checks before it
writes out a file. This prevents the user from inad-
vertently destroying a file. When the ”writeany”
option is enabled, vi no longer makes these checks.

-

/"\

SECTION 1 Editors

Chapter 4: An Introduction to the DM Editor

4.1 THE DISPLAY MANAGER EDITOR

The Display Manager (DM) is the program that controls the display
screen of a DOMAIN node. In addition to its window-management func-
tions, the DM includes a highly programmable full-screen editor. This
editor handles all manipulation of text on the screen of your DOMAIN
node. It allows you to

e edit commands in the input pad of a shell window

edit text in an ‘“‘edit pad”’ window

e search the contents of an edit or transcript pad for a particular pat-
tern of characters :

e copy text from one window and paste it into another window (or
another place in the same window) or write it to a disk file

o redefine the keyboard and function keys to suit the needs of the task
at hand.

In this chapter, we provide an introduction to the DM editor for
DOMAIN/IX users. Even though DOMAIN/IX includes several popular UNIX
editors (ed, ex, vi), the DM editor offers something the others don’t: a
uniform editorial interface between you and any process requiring key-
board input.

All of the editing features described in this chapter apply to shell input
pads as well as to the edit pads used for creating text files. In addition,
the DM editor’s pattern matching facilities can be used to search through
shell transcripts for data, old command lines, error messages, filenames,
and similar things. And, while you can’t edit a transeript pad, you can
cut material out of it and paste it back into an input pad, where it can
be edited or resubmitted as is. You can also save sections of shell tran-
seripts for later examination and analysis. (See Chapter 1 of the
DOMAIN/IX User’s Guide for more on shells and transcript pads.) You
may prefer another editor for certain specific tasks, but a short time
spent learning the fundamentals of the DM editorial interface will allow
you to use the DOMAIN system in the most pleasant and efficient manner.

Each section in this chapter describes a set of editing tasks and the DM
commands you use to perform them. You can execute a DM command
by:

e pressing a key that has been mapped to a particular DM command or
command sequence (either with the default key definitions, or by a

DM Editor 4-1

SECTION 1 Editors

key definitions file you create),
e entering the command(s) at the
Command:
prompt in the DM input window.

The information in this chapter is only an introduction, meant to give
you some indication of what the DM editor does and — in some cases —
how it does it. For a complete description of all the DM editing com-
mands described in this chapter, refer to the DOMAIN System Command
Reference.

When you create a file using the DM editor, UNIX programs
will see it as owned by ‘‘root” until you explicitly specify
another owner of the file using the chown[1] command. In
this case, ownership is assigned to ‘‘root’’ only because the
real owner can’t be determined. You will not have to log in
as ‘“‘root”’ in order to change the ownership of these files.
Once ownership has been assigned, it will not be affeced by
further editing with the DM editor. It is especially important
to recognize this phenomenon when using the DM editor to
create .login, .cshrc and .profile files, since UNIX shells only
read these files if they are owned by the person opening the
shell.

4.2 OPENING AN EDIT PAD

To open an edit pad, use the DM command ce (normally mapped to the

key). If you press the key, you will be prompted to type a

filename
edit file:

in the DM input window. You may also use the direct form of the ce
command

Command: ce filename
where filename is the name of the file you want to edit.

If the named file exists, the DM will open an edit pad onto it and place
the cursor over the first character in the file. If the named file does not
exist, the DM will create it and open a blank edit pad.

If you want to open the pad in read-only mode, use the DM command cv

(normally mapped to the key). If you press the key, you
will be prompted

read file:
in the DM input window. You may also use the direct form of the cv
command

4-2 DM Editor

TN

&

.\\—‘/

O

SECTION 1 Editors

Command: cv filename
where filename is the name of the file you want to edit.

If the named file exists, the DM will open an edit pad onto it, place the
pad in read-only mode, and place the cursor over the first character in
the file. If the named file does not exist, the DM will return an error mes-
sage.

4.3 SAVING THE CONTENTS OF AN EDIT PAD

An edit pad is a volatile area. All editing is done in a buffer, so all
changes made in an edit pad must be explicitly written to the file, other-
wise they will be lost. That’s why the DM’s pw (pad write) command is
so important. The pw command is normally mapped to the key.
You can also execute it in the DM input window by typing

Command: pw

If you follow a pw with a we command, the contents of the pad will be
written to disk and the window onto the pad will be closed. Otherwise,
the file will simply be updated and the pad left open.

Note: If you close a window onto an edit pad (by executing a we
command), all changes made since the last pw will be lost. If
you attempt to do this, the DM will prompt you with the fol-
lowing message in the DM input window. 1

File modified. OK to quit?

You must type either y or n. An n will return the cursor to
the edit pad. A y will close the file and discard the changes.

The sequence pw; we (pad write, window close) is usually mapped to 1Y.
Pressing will update the file and close the window. The com-
mand pw is usually mapped to TW, so pressing will update
the file and leave the window open.

The first time you execute a pw during an editing session on the file
filename, the DM, as you would expect, writes the contents of the edit
pad to the disk file filename. The next time you do a pw on filename,
the previous version is renamed filename.bak. In this way, the dm always
keeps two versions of any file that has been saved more than once. The
Jfilename version, which is the most recent, and the filename.bak version,
which is the second most recent.

4.4 EDIT PAD MODES

Edit pads can be opened in read-only mode or read/write mode. You
cannot, of course, make changes to the text in a read-only edit pad,
although you can copy, search, and scroll through the text. In write
mode, you can write to a pad and change text using all of the editing

DM Editor 4-3

SECTION 1 Editors

commands described in this chapter.

When a pad is in read-only mode, the letter R appears in the window
legend. The R disappears when the pad is put into read/write mode.
The DM command ro (normally mapped to M) sets read-only mode. It
has the following format.

Command: ro [-on|-off]

If you do not specify an option, ro toggles the current mode setting. If
you've modified the text in a pad, you cannot change the pad to read-
only mode without first writing the changes to a disk file (saving the file).
The pw command, described in the previous section, allows you to write
your changes to a disk file without closing the pad and window.

The DM editor defaults to insert mode, although it can be reset to over-
strike mode. In insert mode, the DM inserts characters you type at the
current cursor position. The remainder of the line moves right to make
room for the new characters. In overstrike mode, characters you type
replace those under the cursor.

When a pad is in insert mode, the letter I appears in the window legend.
The I disappears when the pad is put into overstrike mode. All
read/write pads are initially opened in insert mode.

You can toggle in and out of insert mode by using the key (called
[INS MODE] on 880 keyboards). You can also use the DM command ei,
which has the following format:

Command: ei [-on|-off]
If you do not specify an option, the ei toggles the current mode.
Any attempt to type past the window border will result in a beep and a
" No room for more text at that position

message from the DM. When this happens, press at the begin-
ning of the next line.

4.5 INSERTING CHARACTERS

Any pad that is in write mode automatically accepts any ASCII characters
that you type at the keyboard as input to that pad. Control characters
are ignored, since it is most often the case that control characters have
been mapped to DM functions, although there is a way to insert the ASCII
tab and End-of-File characters.

4.5.1 Inserting a Text String

The DM command es’string’ inserts string at the current cursor position.
You'll probably find this command most useful in key definition com-
mands. For example, if you wanted to define the shifted key to
insert the string Hi there, you would use the following key definition.

4-4 DM Editor

SECTION 1 Editors

Command: kd fl1s es’Hi there’ ke

This sort of key definition can be done as needed by entering the com-
mand from the DM input window. You can also put these definitions
(like all key definitions) in a file, from which they can be loaded as neces-
sary.

4.5.2 Inserting an End-of-File Mark

To insert an end-of-file mark (EOF) in a pad, type or use the
DM command eef (insert EOF). If the line containing the cursor is
empty, the DM inserts the end-of-file mark on that line. Otherwise, the
DM inserts the end-of-file mark following the current line. The mark is
invisible.

4.5.3 Inserting a TAB

The DOMAIN/IX key definitions file uniz_keys redefines the shifted
key to insert an ASCII tab character. Normally, the key simply
moves the cursor to the left.

4.6 DELETING TEXT

This section deals with commands for deleting characters, words, or lines
of text. To delete a larger block of text, refer to the section entitled
“Cutting Text.”

4.6.1 Deleting Characters

The DM command ed, normally mapped to , deletes the
character under the cursor. If the character under the cursor is a NEW-
LINE, ed joins the current line and the following line.

To delete the character to the left of the cursor, press | BACK SPACE | If
the pad is in overstrike mode, the ee command replaces the character
with a blank. Both and [BACK SPACE] are repeat keys. You
can repeat the operation by holding down the key.

4.6.2 Deleting Words

The sequence of DM commands required to delete a word is normally
mapped to the function key. Pressing will delete everything
from the current cursor position to the next space, punctuation mark, or
special character (other than a dollar sign or underscore).

invokes the following command sequence:
dr;/[" a-z0-93_]/xd

The DM writes the deleted word to its default paste buffer (a temporary

file). You can reinsert the word elsewhere by moving the cursor to the
desired location and pressing the key.

Note: The default paste buffer is a volatile area. It only holds the
most recently deleted text object. Even a BACK SPACE will

DM Editor 4-5

SECTION 1 Editors

C

wipe it out (and overwrite the buffer with whatever you back-
spaced over).

4.6.3 Deleting Lines

To delete text from the current cursor position to the end of the line
(excluding the NEWLINE character), press the key. In the default
key definitions file, this key is programmed to execute the following DM
command sequence.

es ¢ “;ee;dr;tr;xd;tl;tr

The DM writes the deleted line to its default paste buffer. You can rein-
sert the line elsewhere by either pressing or specifying the XP command
(see the note about the default paste buffer in the previous subsection).

4.7 DEFINING A RANGE OF TEXT

The editing commands that perform cut (delete), copy, and substitute
functions operate on a range, or block, of text. You mark the beginning
of a range of text by moving the cursor to the first character in that
range and pressing the key. Once you have marked the begin-
ning of a range, move the cursor to the end of the range, then execute
one of the DM commands that operates on a range of text. In echo mode P
(the default), text in the marked range will be highlighted. If you do not L
specify literal points, dr places one mark at the current cursor position.

4.8 COPYING, CUTTING, AND PASTING TEXT

The commands discussed in this section allow you to move blocks of text
from one place to another in a pad, move text from one pad to another,
or move text into and out of named (or default) paste buffers.

Before specifying the commands that copy or cut text, use the dr com- 1‘
mand or to define the range of text to be copied or cut (see the S
previous section). If you do not define a range, the DM copies or cuts the

text from the current cursor position to the end of the line.

4.8.1 Using Paste Buffers

To perform copy, cut, and paste operations, the DM uses temporary files
called paste buffers. Paste buffers hold text you've copied or cut so that
you can paste it in elsewhere.

You can create up to one hundred paste buffers, each containing different

blocks of text. To create a paste buffer, you specify a name for the paste

buffer as an argument to the commands that copy or cut text (xc and

xd). To insert the contents of a paste buffer you created, specify the

name of the paste buffer as an argument to the command that pastes

text (xp). We describe the xc, xd, and xp commands in the next three (‘\
sections.

4-6 ' pM Editor

O

SECTION 1 Editors

When you log off, the DM deletes all paste buffers you created during the
session. If you want to save the copied or cut text for use during another
session, you can write it to a permanent file (see the xc and xd command
descriptions in the next two sections).

If you do not specify the name of a paste buffer or permanent file when
you specify the commands that copy or cut text, the DM writes the text
to the default paste buffer. The DM also uses this default paste buffer
when you press the predefined function keys and control character
sequences that copy, delete, and paste text.

4.8.2 Copying Text

To copy a defined range of text from any pad into a paste buffer or file,
specify the xc¢ command in the following format:

Command: xc [name | -f pathname| [-R]

where name specifies the name of a paste buffer that the DM creates to
hold the copied text. The -f option specifies the name of a permanent
file for the text. For example:

Command: xc copy_text
copies a defined range of text into a paste buffer named copy_text.
Command: xc -f copy_text

copies a defined range of text into a permanent file named copy_text in
the current working directory. If you supply the name of an existing
paste buffer or file, xc overwrites its contents. If you omit the name of a
paste buffer or permanent file, xc writes the copied text to the default
(unnamed) paste buffer. The -r option instructs xc to copy a rectangular
block of text that you have defined by marking a column on the left side
of the text. Use the DR command or column before entering the
xc -R command. xc then copies all characters to the right of the
specified column. By default, 880 keyboards invoke the xe¢ command
using the default (unnamed) paste buffer. You must specify the xc¢ com-
mand with the argument or the option if you want to copy text to a
named paste buffer or permanent file. Once you have copied a range of
text, you can use the xp command to paste the text in elsewhere (see the
‘“Pasting Text’’ section). '

4.8.3 Cutting Text

When you cut text from a pad, the DM copies the text into a paste buffer
or file and then deletes it from the pad. To cut a defined range of text,
specify the command in the following format:

Command: xd [rame | -f pathname] [-R]

where pathname specifies the name of a paste buffer that the DM creates
to hold the deleted text. The -f option specifies the name of a per-
manent file for the text. You can use this command only in pads created
with or via the ce command. If you supply the name of an

DM Editor 4-7

SECTION 1 Editors

existing paste buffer or file, xd overwrites its contents with the newly
deleted text. If you omit the name of a paste buffer or permanent file,
xd writes the deleted text to the default (unnamed) paste buffer. The -R
option instructs xd to delete a rectangular block of text, as described
above under the discussion of xc. By default, on 880 keyboards invoke
the xd command using the default (unnamed) paste buffer. You must
specify the xd command with the argument or the option to write
deleted text to a named paste buffer or permanent file, respectively.

Once you have cut a range of text, you can use the xp command
(described in the next section) to paste the text in elsewhere.

4.8.4 Pasting Text

To insert the contents of a paste buffer or file into a pad at the current
cursor position, specify the command in the following format:

Command: xp [name | -f pathname] [-R]

where pathname specifies the name of an existing paste buffer that con-
tains the text you want to insert. The -f option specifies the name of an
existing file that contains the text you want to insert. If you do not
specify the name of a paste buffer or permanent file, xp inserts the con-
tents of the default (unnamed) paste buffer.

The -R option instructs xp to insert a rectangular block of text that you
have copied or deleted using the xc or xd command and the -R option.

xp uses the current cursor position as the origin (upper left corner) of the
block.

4.9 USING REGULAR EXPRESSIONS

The DM allows you to use all regular expressions supported by the AEGIS
shell when doing search and substitute operations. While our regular
expression structure is similar to the ones supported by the various UNIX
shells and editors, it has numerous subtle differences. Read the DOMAIN
System Command Reference and DOMAIN System User’s Guide for full
information on regular expressions. This chapter is just an overview,

so we won't deal with the topic here.

4.10 SEARCHING FOR TEXT

To search from the current cursor position forward for the pattern pat,
use the following DM command.

Command: /pat/

To search backward from the current cursor position for pat, the com-
mand syntax is

Command: \pat\

4-8 DM Editor

e

-

O

SECTION 1 Editors

In either case, the pat may be a regular expression.

A search operation moves the cursor to the first character in the specified
pat. If necessary, the pad moves under the window to display the match-
ing string. If the search fails, the cursor position does not change, and
the DM displays the message

No match
in its output window.

Searches do not wrap around the end or beginning of the file. Therefore,
to search an entire pad, you should position the cursor at the beginning
of the pad.

4.10.1 Case Sensitivity

By default, searches are not case sensitive. To perform a case-sensitive
search, you must first set case sensitivity on by executing the DM com-
mand

Command: sc -on
If the DM scans more than 100 lines in a search operation, it displays a
Searching...

message in its output window, then polls for keystrokes after every 10
lines searched. You may cancel the search by typing or by
pressing a key that has been defined to invoke the abrt or sq command.

To repeat the last forward search, use the command
Command: //

To repeat the last backward search, use the command
Command: \\

The DM saves the most recent search instruction, so you may repeat it
even if you have specified other (non-searching) commands since then.

4.10.2 Cancelling a Search Operation

To cancel the current search operation, type 1X, mapped to the abrt
command. Since you cannot type DM commands for the pad being
searched, you must use or define a key to invoke abrt. (See
the “Defining Keys’’ section in the DOMAIN System User’s Guide.)

The DM command also cancels a search operation. As with the abrt
command, you must define a key to invoke sq during a search. When
you type 1X or press a key defined to invoke abrt or sq, the DM displays
the message ‘“Search aborted” in its output window.

DM Editor 4-9

SECTION 1 Editors

4.11 SUBSTITUTING TEXT

Unlike searches, which ignore case unless told otherwise, all substitutions
are case-sensitive. If the DM scans more than 100 lines while processing a
substitute command, it displays a

Substitute in progress...

message in its output window. Then it polls for keystrokes after every
10 lines it processes.

4.11.1 Substituting All Occurrences of a String

To replace all occurrences of a pat with a replacement, use the following
DM syntax:

Command: s[[/[pat]]/replacement/]

Regular expressions are allowed in the pat, but not in the replacement.
An ampersand (&) in replacement expands to pat. For example

Command: s/Tom/& Smith/

replaces all occurrences of “Tom’ with “Tom Smith” over the defined
range of text. The s command does not move the cursor or the pad,
even if it makes changes in areas of the pad not visible through the win-
dow.

4.11.2 Substituting the First Occurrence of a String

The so command is like s except that so replaces only the first
occurrence of a string in each line of a defined range of text.

4.11.3 Changing the Case of Letters

To change the case of letters in a defined range of text, specify the com-
mand in the following format: ‘

Command: case [-s | -u | -]

where -s swaps all uppercase letters for lowercase and all lowercase
letters for uppercase, -u forces all letters to uppercase, and -1 forces all
letters to lowercase.

4.12 UNDOING PREVIOUS COMMANDS

To undo the most recent DM command you entered, use the key
(mapped to the DM command undo).

The undo command works by compiling a history of DM operations in
input and edit pads in reverse chronological order. UNDO reverses the
effect of the most recent DM command you specified. Successive UNDOs
reverse DM commands further back in history.

To compile its history of activities, the DM uses undo buffers (one per edit
pad and one per input pad). The undo buffers are circular lists that,
when full, eliminate the oldest entries to make room for new ones, so

4-10 . DM Editor

O

O

SECTION 1 Editors

that in practice, you may not be able to undo everything. The DM
groups entries together in sets. For example, a S (SUBSTITUTE) com-
mand may change five lines. While the DM considers this to be five
entries, the five entries are grouped into a single set so that one UNDO
will change all five lines back to their original state. When a buffer
becomes full, the DM erases the oldest of entries. This means that UNDO
will never partially undo an operation; it will either completely undo it or
do nothing. An undo buffer for an edit pad can hold up to 1024 entries.
An undo buffer for an input pad can hold up to 128 entries.

DM Editor 4-11

)
{

)

O

?name, ed error message
., used by ed

A

append, ed command
args, ex command
autoindent, vi option

B
buffer, used by ed
buffers, named, in vi

C
case sensitivity
in DM editor
in vi searches
context search, in vi
control characters
displayed by vi
to type in vi
counts, in vi commands
cut-and-paste
using DM editor
using ed
DM edit pad
to close
to save
DM editor
.bak files
insert mode
dot, used by ed

E

environment variables
EXINIT
TERM

ESC, in vi-

ex
command abbreviations
command mode
counts
report option
Shell escape
text input mode
to scroll

ex commands

Index

1-5
1-7

2-3
3-29

3-16

4-9
3-29
3-7

3-14
3-30
3-9, 3-15, 3-26

4-7
1-15

4-3
4-3

4-3
4-4
1-7

2-1, 3-20
3-4
3-5

2-4
2-4

2-5
2-17
2-4
2-18

Index

<

>
abbreviate
append
args
change
copy
delete
edit
exit

file
global
insert
join

list
map
mark
move

n

next
number
open
preserve
print
put
quit
read
recover
rewind
set
shell
source
stop
subsitute
ta
unabbreviate
undo
unmap
version
visual
write
yank

zZ

join

EXINIT, environment variable
exrc, options allowed in

2-17
2-17
2-7
2-7
2-7
2.7
2-7
2-8
2-8
2-16
2-8
2-9
2-10
2-10
2-10
2-10
2-10
2-10
2-11
2-11
2-11
2-11
2-11
2-11
2-11
2-12
2-12
2-12
2-13
2-13
2-13
2-13
2-14
2-13
2-14
2-14
2-14
2-15
2-15
2-15
2-15
2-16
2-16
2-10
2-1, 3-20
2-20

SECTION 1

I .

insert mode, in vi

M
magic/nomagic, in vi
metacharacters, used by ed

N

next, ex command

P
paste buffer
DM default
DM named
regular expressions
in ex
in vi

S
scroll, in ex
Shell escape
from ex
from vi
shiftwidth, ex option
substitute, ed command

T

tab character, in vi

TERM environment variable, in

TERMCAP, used by ex/vi
tset, to specify terminal type

U

undo
in DM editor
in ex
in vi

v
vi, alternate file name
vi commands
% (to matching delimiter)
((to next sentence)
) (to prev. sentence)
+ (head of next line)
- (head of prev. line)
0 (to left margin)
? (search backward)

3-10

3-29
1-17

2-3

4-6
4-6

2-18
3-29

2-18

2-17
3-17
2-17
1-9

3-14

2-1
3-4

4-11
2-14
3-13

3-27

3-35
3-35
3-35
3-33
3-33
3-33
3-37

[[(to beginning of this section)

” (goto marked line)
* (goto mark)

3-36
3-36

" (to previous context mark)

3-4

3-35

3-36

1B (to previous page)
1D (scroll down)

1F (to next page)

1U (scroll up)

]] (to next section)

“ (prev. context)

“ (to previous context line)
a (append)

b (back one word)

e (end of word)

G (go to)

H (home)

h (move left)

J (join)

j (move down)

k (move up)

kill (erase line)

1 (move right)

L (to last screen line)
m (mark)

M (to middle of screen)
n (next)

p (put)

p (put)

to write/quit

u (undo)

w (to next word)

y (yank)

y (yank)

77

YAA

3-35
3-34
3-34
3-34
3-35
3-8

3-36
3-37
3-34
3-34
3-34
3-35
3-33
3-22
3-33
3-33
3-30
3-33
3-36
3-36
3-36
3-28
3-16
3-39
3-6

3-41
3-34
3-16
3-39
3-28
3-6

{ (to beginning of paragraph)3-35

} (to next paragraph.)
G (Go to)

vi options

autoindent
autowrite

3-35
3-8

3-22
3-28

Editors

Index

7

O

O

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

1.10
1.11
1.12

1.13
1.14

2.1

2.2

2.3
2.4

2.5

2.6
2.7

2.8
2.9

CONTENTS

. A troff Tutorial 1-1

PREPARING AN INPUT FILE 1-2

POINT SIZES AND LINE SPACING 1-2
FONTS AND SPECIAL CHARACTERS 1-5
INDENTATION AND LINE LENGTH 1-6
TABS 1-8

LOCAL MOTIONS, LINES, AND CHARACTERS
STRINGS 1-12

INTRODUCTION TO MACROS 1-13

TITLES, PAGES, AND NUMBERING 1-14

1.9.1 Page Numbers 1-16

NUMBER REGISTERS AND ARITHMETIC 1-16
MACROS WITH ARGUMENTS 1-18
CONDITIONALS 1-20

ENVIRONMENTS 1-22

DIVERSIONS 1-22

. The troff Reference Manual 2-1

INTRODUCTION 2-1

2.1.1 Usage 2-1

2.1.2 Input File Format 2-3

2.1.3 Output Device Resolution 2-4

2.14 Numerical Parameter Input 2-4
2.1.5 Numerical Expressions 2-5

2.1.6 Notational Conventions 2-5

FONT AND CHARACTER SIZE CONTROL 2-5
2.2.1 Character Set 2-5

2.2.2 Fonts 2-6

2.2.3 Character Size 2-6

PAGE CONTROL 2-8

TEXT FILLING AND ADJUSTING 2-10
2.4.1 Filling and Adjusting 2-10

2.4.2 Interrupted Text 2-11

VERTICAL SPACING 2-12

2.5.1 Baseline Spacing 2-12

2.5.2 Extra Line Space 2-12

2.5.3 Blocks of Vertical Space 2-13

LINE LENGTH AND INDENTING 2-14
MACROS, STRINGS, DIVERSIONS, TRAPS 2-14
2.7.1 Macros and Strings 2-14

2.7.2 Copy Mode Input Interpretation 2-15
2.7.3 Arguments 2-15

2.7.4 Diversions 2-16

2.7.5 Traps 2-17-

NUMBER REGISTERS 2-19

TABS, LEADERS, AND FIELDS 2-20

1-9

2.10

2.11

2.12

2.13
2.14
2.15
2.16

2.17
2.18

2.19
2.20
2.21
2.22
2.93

2.24

2.9.1 Tabs and Leaders 2-20 1

2.9.2 Fields 2-21 :
CONVENTIONS AND TRANSLATIONS 2-21
2.10.1 Input Character Translations 2-21

2.10.2 Ligatures 2-22

2.10.3 Backspacing, Underlining, Overstriking 2-22
2.10.4 Request Characters 2-23

2.10.5 Output Translation 2-23

2.10.6 Transparent Throughput 2-24

2.10.7 Comments and Concealed Newlines 2-24
LOCAL MOTIONS 2-24

2.11.1 Local Motions 2-24

2.11.2 The Width Function 2-25

2.11.3 The Horizontal Place Marker 2-25
OVERSTRIKES, BRACKETS, AND LINES 2-25
2.12.1 Overstriking 2-25

2.12.2 Zero-Width Characters 2-25

2.12.3 Large Brackets 2-25

2.12.4 Line Drawing 2-26

HYPHENATION 2-27

THREE-PART TITLES 2-28

OUTPUT LINE NUMBERING 2-28
CONDITIONAL ACCEPTANCE OF INPUT 2-29
2.16.1 Built-In Conditions 2-30
ENVIRONMENTS 2-30

INSERTIONS FROM STANDARD INPUT 2-31
2.18.1 Prompts 2-31

INPUT/OUTPUT FILE SWITCHING 2-32
MISCELLANEOUS REQUESTS 2-32

OUTPUT AND ERROR MESSAGES 2-33
FONT STYLE EXAMPLES 2-34

INPUT CHARACTER NAMES 2-35

2.2